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SChapter 1

INTRODUCTION

1.1 The Problem Domain

SThis tesearch aims to advance the science of computer stereo vision - reconstruc-

tion of 3-dimensional scenes from 2-dimensional images. The problem is to establish a

correspondence between features or regions in two or more images from which we can

calculate positions in 3-space. In-~ue research, we chooie to match features, rather than

use the traditional methods of area correlation. The featurs-'we use re extended edges, or

more precisely, the image curvres which are Lhe projections of edges in the scene. -We-"-

y--U€rir preprocessing stage which can extract such edges by first applying an edge operator

and then linking edge elements into extended image curves. The choice of feature-based

stereo over area-based stereo offers advantages in speed and accuracy, as well as avoiding

some fundamental problems.

In an edge-based system, computation effort can be concentrated on the edges.

Depth information about surfaces can be inferred from surface boundaries, which are

visible as edges. If high speed, specialized processors are used for edge operators [Nudd

1977], overall computation can be cut significantly.

Typically, edge-based techniques offer a factor of 13 improvement in accuracy

over correlation methods. In correlation, accuracy near a boundary is limited to a fraction

of the width of the correlation window (typically 8x8). An edge operator, however, can

provide measurements to a fraction of a pixel. Edge-based systems also have an advantage

with small objects whose total size is smaller than a correlation window. Similarly,

long, thin objects such as poles are promineint feakures, but are too small for correlation
i• windows.

' _
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Area correlation systems depend ultimately on image intensity, which can be

affected by several factors. Film and camera sensitivity may vary over an image or

fram one image to the next and scene illumination may change for images taken at

different times, The reflectivity of objects may depend strongly on viewer position, as In

specular reflections. Many correlators automatically compensate for constant gain and

bias differences in the images, but edge position and orientation are much more stable

than photometric quantities because the conditions listed above will not significantly affect

them.

A serious deficiency of area correlation is failure at surface discontinuities. Simple

area correlation techniques inherently fail in tb.e vicinity or surface disconmtinuities because

•he edge of an object appears against a different background area in each view of the stereo

pair. It is important to locate surface discontinuities, since it is precisely the boundaries

of objects where accurate measurements are most important. Surface discontinuities are

typical of most scenes containing man-made objects such as buildings and vehicles.

Fine textures arnd smooth surface slopes are typical of natural surfaces such as

rock, grass and vegetation. In such regions, area correlation can be quite effective. On the

other hand, regions of totally uniform intensity provide no signal for an area correlator,

and the only hope is to locate the boundaries and interpolate the interior.

Stereo vis;on iystems hawe applications in mapping, aircraft and missile guidance,

autonomous wobut -uhicles [Moraver A'980], planetary exploration [Gennery 19801, and

industrial inspection anid wssembly. Some applications favor area-based systems and some

favor edge-bied systems. Thus, cdge..based and area-correlation approaches are in a

sense compk'rentary. A general purpose stereo vision system should include both.

a!

I
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"j &Results and Contributiopm

This thesis approaches the stereo problem in two steps. We first use epipolar

geometry to reduce the problem to a one-dimensional matching. Given the geometry of

the two cameras, a point in one image may be projected to a line in an image from a

different viewpoint. Any corresponding point must lie on that epipolar line. We then

demonstrate the use of edge continuity ýnd context in combining matches along adjacent I

epipolar lines to produce a match over an entire image.

We derive a series of important geometric constraints For matching edges in the

one-dimensional problem. However, edges are not matched in solation - they must fit a

global interpretation. Occlusion constraints require an explanation for each occluded edge

or surface and ensure a consistency across the whole epipolar line. If an edge is occluded,

there must be a surface in a position to block the view of one camera. Conversely, if an

edge is not occluded, there must be no surface blocking the view of either camera. We

have modified a dynamic programming algorithm, the Viterbi algorit.hm, to incorporate

these constraints and the special conditions of stereo matching. The algorithm determines

the highest scoring one-dimensional match that satisfies these occlusion constraints.

We have derived two analytic restlts concerning constraints on interval length and

edge angle for stereo matching [Arnold 1980]. The interval length, or distance between

adjacent edges on an epipolar line, is a function of surface orientation. The projected

dimensions of a surface will vary in two views according to the orientation of that surface.

Similarly, edge orientation in the scene determines the projection of different edge angles

in the two views.

These results allow a distribution function in the object, space to be translated

to a distribution function in the image space. In the simplest case, we can assume edges

and surfaces to be uniformly distributed over all orientations in the object space. We

can then calculate the likelihood that an arbitrary pair of edges or intervals from the two
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images crrespond. The functions are sharply peaked even far the 60 degree vergence

angles used in aerial photography. When baselines correponding to human vision are

used, the conditions are extremely strong. We have used the results oi' these functions as

components of an evaluation function for stereo matching.

While the usual purpose of the ViterA! algorithm is to find an optimal match, it

is a good strategy not to discard options too early. A globally optimal match may be

suboptimal in the Kinited context of a single epipolar line. It is an advantage to keep

a list of several of the best matches of each line to be filtered later by two-dimensional

consistency relations. For this reason we have developed a significant extension to the

Viterbi algorithm that produces a list of all matches scoring within a preselected range

of the optimal match. This list is then filtered by an iterativw process that enforces

consistency among adjacent epipolar lines.

In 1978 we introduced an edge-based stereo system that used the concept of edge 4
cond-inuity and context to reduce ambiguity lArnold 19781. Edge matches based on simple

local measures such as contrast and angle were filtered by requiring matched edgeii to

be t.ontinuous in 3-space. If an edge extended continuously in one view, its match was

required to have a continuous extension in the other. This system used unlinked edg$

elemnents (edgels), and succeeded in correctly correlating about 00% of the engels in an

image.

Our most recent system operates on linked edgels, or extended edges, and makes

use of more powerful techniques to do the one-dimensional matching. It then appl'ies the

constraint of edge continuity iteratively with the epipolar matching to derive a globally

consistent match.

The principal contributions of this research are the first use of edge continuity

in the context of adjacent epipolar lines for determining matches; the use of occlusion

constraints; the analytical functions for interval and angle constraints; and the modified

Viterbi algorithm that includes suboptimal matches.
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1.3 State of the Art
Is

This section briefly describes some recent work on stereo vision systems by

others that have influenced this thesis. Some of these systems use techniques that wc

have adopted in our work, while others provide interesting alternatives. This survey
concentrates on feature-based stereo.

Moravec's vision system [Moravec 1080] is the input to a navigation and obstacle

ayoidance system for a computer controlled-vehicle. The stereo correiation in this system

is area-based, but the initial correlation is driven by a collect.on of feature points resulting

from an interest opera tor. The interest operatoe selects points with a locally maximal I

value of an interest measure. The interest measure is the minimal directional variance

taken in four directions over a small square window. Thus "interesting" points are those

whose positihn is easy to determine in more than one direction (e.g., intersecting edges).

The points from the interest operator are matched with a binary correlator that uses an

iterative t-T~hnique with increasing resolution to narrow the search at each step. Stereo

irn ges ave taken from nine camera locations along a common baseline, and correlations

from all possible pairs of images are combined to determine the final depth map.

Gennery's stereo system [Gennery 1980] is also designed to pr-ovide input to an

autonomous vehicle. This system uses Moravec's interest operator and binary correlator as

inputs to a camera model solver and ground plane finder. W;t.h an accurate camera model,

the system then applies -. high resolution (area-bascd) correlator capable of subpixel

positioning. Obstacles are defined relative to the ground plane.

Control Data Corporation has developed a Broken Segment Matcher [Henderson

1979] tham is designed to produce structural models of buildings and other cultural scenes

from aerial imagery. Their approach combined edge- and area-based techniques, with

edges serving to bound regions in which correiation is based on Image intensities. The

"images are transformed to make use of a simplified epipolar geometry, and one epipolar

{ I
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line pair is 'seeded' by providing a manual matching of edges crossing that line pair. All

matching is done in one dimension, along epipolar line pairs proceeding outward from the

initial line. Edge match information is propagated from line to line and edited automati-

cally as some edges end and others begin. In a later version, the system assumes that

scenes are c(. -posed of rectilinear structures; surfaces must have one of-three orthogonal

orientations, and all edges are straight.

More recently, Control Data Corporation has developed algorithms for stereo

matching that employ a structural syntaz for uymbolic matching of geometric units

[Panton 1981]. This system works from line drawings, and matches edges or figures corn-

posed of edges. Knowledge of scene geometry is built into the algorithm or entered by

hand and serves to filter ambiguous edge matches. Scenes are restricted to right paral-

lelepipeds (simulated urban structures) and matching is restricted to the horizontal tops

of these objects (roofs). The geometric knowledge umed includes clustering of parallel

lines on opposing figure boundaries, known allowable edge orientation (vanishing points

entered manually) and a priori limits on stereo disparity (based on building heights).

Researchers at MIT have developed a computational algorithm for human stereo

vision [Marr 19771 which has been implemented by Grimson [Grimson 1980]. This sys-

tem convolves the image with spatial frequency filters (an edge operator), and bases its

matching on the zero crossings of these filters, together with contrast and edge orients-

tion estimates. The filters used have varying resolution, and matching proceeds generally

from low to high frequency. An initial vergence or disparity is set manually, and the low

frequency filter output is used to drive fine adjustments to this vergence until a match is

achieved with the high frequency filters over a significant iocta! region. The depth infor-

mnation from each region of correspondence is then interpolated a.-d smoothed into a full

depth map.

Baker'b stereo system [Baker 1981] combines several of the techniques used by

earlier systems and uses both feature- and intensity-based matching. This system begins
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with low resolution images and matches linked edges to get a rough disparity limit for

subsequent higher lesolution matchingc. The matching process uses a Viterbi dynanic

programming algorithm applied to individual epipolar line pairs. It mayimizes a metric

based on local edge properties including contrast and angle, and uses the edge angle

and edge interval measures described in this thesis. Some edges are allowed to remain

uninterpreted in this step. A cooperative process then removes edge correspondences

that violate a three-dimensional continuity constraint across epipolar lines. Another edge

matching process is applied to attempt to match unassgre.d edges bounded by pairs of

matched edges. A flnal dynamic programming process matches intensity data bounded

by matched edges and results in a full disparity map of the image pair.

II

I
I H
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1.4 Other references

This research touches on many disciplines; for the reader who wishes to pursue

some of these further or to develop .a background for reading this thesis, we provide a

short lRt of references.

Many of the images processed by stereo vision programs originate in aerial photog-

raphy, where stereo images have been used for years in making topographic maps. The

textbook by Burnside [Burnside 1979] provides an introduction to the main theoretical

elements of photogrammetry, while the more massive reference from the American Society

of Photogrammetry [Slama 19801 covers the subject in more detail. Both books cover the

geometry of aerial photographs, from the principles of central perspective projection to

corrections for typical aircraft alignment and tilt problems. They a!so include information

that is of practical use to a researcheti seeking images from z:i aerial survey company.

For a theoretical treatment of perspective transformations and coordinatie systems, an

introductory text in projective geometry such as Wylie [Wylie 19701 is recommended.

A central algorithm in this thesis is the Viterbi algorithm, which is one result front

a field of research called dynamic programming. The first complete text in this area was

by Bellman fBellman 1957J. Dynamic programming has since become & well established

discipline with many textbooks following [White 1969, White 1978, Viterbi 1979, Denardo

19821. The first published account of the Viterbi algorithm was in 1967 [Viterbi 19671 as

a decoding algorithm for convolutional codes, but the algorithm has since been used In a

variety of applications. Forney [Forney 19731 gives a good tutorial and survey.

The psychology of human stereo vision is an interesting area because the

phenomena can be personally experienced. Many experiments and unusual examples of

stereo effects are described by Julesz [Julesz 1971, Julesz 1975]. His experiments in random

dot stereograms have been used as test cases for computer stereo programs.

It

1* ___ ___ .r
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Computer vision Is a much mi re recently developed discipline, and until recently

there have been few books on the subject. Ballard and Brown idallard 1982] have just

published a comprehensive book on computc, visit-n that is designed as a textbook And

provides a good survey of this field. David Marr Ma•rr 1982] has taken a different approach

and believes the *overall goal is to understand vision completely". Marr presents his

group's rmsearch efforts to model human visloe computationally. Both books provide

good bibliographies.

F E

I
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THEORY

This sectior introduces the subproblem of one-dimensional stereo matching. We

describe the geometry and develop a notation that will be used later in the presentation

of the dynamic programming algorithm.

2.1.1 - Georietry

We will use the stereo camera geometry of Figure 2-1. The projective center of

the lett camera is the origin and the projective center of the right camera lies on the x

axis. The baseline, B, is the distance between the projective centers. The two image

planes are coplanar and are perpendicular to the z axis. The image distance, f, is the

distance from the projective center to the image plane, and is the same in both cameras.

This normal camera model is for side-by-side cameras.

ie

Figure 2-1: Stereo Cam~era Geometry.

*1I~_______ ___7_
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features of interest are scene edges, which project as curves in the image planes. For thk,

one dimensional case, we e interested in the points at which image curves interseft the

epipolar line. These intersection points serve to segment the epipolar line into intervals,

which are ordered by their occurrence in the image from left to right. The matching

problem is one of mapping between a sequence (,f intervals or intersection points from one

view and a similar sequence in the other.

Consider a pair of corresponding epipolar lines from a stereo image pair. We

locate intersc.t;ion points of image curves with the epipolar lines and want to match these

points to reconstruct the original scene. If we back-project these points we get for each

view a set of rays from the camerp's projective center, through the intersection points.

Every ray from each image lies in the epipolar plane. If we view this -klane from the side,

we see that the rays from the left and right cameras int sect to form a grid or lattice. This

lattice is bounded by a region obLained by projecting rays through the image boundaries.

We will refer to this region as the stereo zone, for only objects within this zone can be seen

in stereo. (See Figure 2-2a). In general, the image boundaries need not be symmetric with

respect to the projective center. Although this is true for most cameras, it is common to

digitize the film off-center in order to Improve the stereo overlap (see Figure 2-2b). Thus,

the stereo zone may extend to infinity or may be a closed quadrilateral, depending on how

the imagc boundaries are defined in the film plane.

Each lattice point corresponds to a potential match between a feature in the left

and a feature in the right. If such a match were correct, then the object must have

been at the point in space represented by that lattice point. We will use this lattice as

our coordinate system and attempt to reconstruct the original scene within it. The two

axes of the grid are labeled with the left and right feature sequences. The reconstructed

surfaces of the scene, or rather their intersection with the epipolar plane, will be called a

profile.
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f %
I%
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ii/ .4

a.igure 2-2a: The Stereo Zone is
image boundaries.deemndbthca rago tyad

Ii I ill

-, .4

Figure 2-2b: Image boun•daries may be restricted for better overlap and
a finite Stereo Zone.

I
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2.1.2 - Basic AssuretLIn.*

We now make some limiting assumptions In order to precisely define the problem

we intend to solve. First, we make the general assumption that the scene is independent

of the viewer. While the stereo camera model and the objects in the scene may be aligned

with respect to a common reference such as gravity, individual features in the scene should

have no dependence on camera angle. That is, small shift3 in camera position should not

cause significant changes in the image.

We assume that surfaces ae bounded by visible edges. That is, if a surface or

slope discontinuity exists, it 'will produce a curve in the image which will be detected by

our edge operator, This ensures that the reconstructed profile will have all its boundtaries

at lattice points. Thefe may also be edge curves in the image that do not result from

discontinuities but from surface markhigs. Note that this does not mean that every feature

in one view must match some feature in the other. Occlusion by intervening surfaces can

block features from one or both cameras. We merely require that a feature is detected

if and only if it it not occluded. This assumption is equivalent to perfect edge detection;

performance with imperfect data is discussed in a later section.

We assume that the profile consists of straight line segments. A sufficient cond[-

tion for this is that in the o, iginal scene all surfaces areplanes. This restriction isnot

a severe one in cultural scenes, where man-made surfaces usually are planar. In fact,

the interpretation of a curved surface as flat may still, allow an accurate estimation of

itn boundary (see Figure 2-3). However, with curved surfaces, tangent discontinuities are
possible (see Figure 2-4). Since such features &re dependent on camera position, it Is

possible for a surrace boundary in one view to htave no counterpart in the other view.
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II
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Figure 2-3: The distance, d, between the true boundary and the apparent
boundory of a circle in the epipolar plane is small ror inost vergence angles.
Its value may be calculated from d -= R(sec(a/2) - 1) where R is the radius
of the circle and ot is the stereo vergence jingle. For angles or 60', 12* and
4°, the errors are .15R, .006R and .O00001,. respectively.

Finally, it will be a necessary condition of the dynamic programming methods to

be introduced later, that the two image sequences match monotonically:

Let nj and b, be elements of the left sequence and a, and b, be elements of'

the right.

Assume a, matches a, and bi matches b,.

If aj occurs tu, the left of bi then a, must occur to the left of b,..

I In other words, there can be no order reversal in mapping one sequcnce to the other.

Ta
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LEFT RIGHT

Figure 2-4: Tangent discontinuities are viewer-dependent "features" that

h, ve no stereo correspondence even though there may be no occlusion.

Order reversahi may occur wheneve, there is an overhang, which we define as a

disconnected profile. Figure 2-5 illustrates the classic case, where an overhanging surface

is far enough above the background surface that the cameras can "see under it". Not

all overhangs produce order reversals. It is necessary for there to be a feature within the
wedge-shaped zone (cross-hatched area in Figure 2-5) beneath the ovurhanging surface.

The geometry of this zone depends on the cameia model and the width and alttude of

the upper surface. Overhangs usually result from something like a wire stretched across

the scene, or from oblique views of thin objects. Figure 2-6 shows how an aerial view of

a building can cause an overhang. While overhangs are common in many scenes, they do

not usually result in order reversals.

* I
II
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%G % %r '# J I F

S% % % 
V

R , %

Figure 2-5: A classic case of order reversal caused by an overhang. Any
scene feature falling vwithin the cross-hatched zone will generate an order
reversal.

Figure 2-6: Even a simplc block CA11 produce aix overhang and an ord.~x
reversal, but most overhangs do not resilt in order reversals.I

a

: 
i
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In summary, we assume that the profile resulting from the intersection of the

epipolar plane with the SCCB e consists of one co •:,,ous, connected path of 6tralght

line begments representing s&irface intrvals. The bounding edges and possible lnterx,.y

markings of these srurfaces ire detecfed in each camera except when or. Ludld by an

intervening surface,. Any s ich intervening surface must be another part of the amei

profile.

'p
2.1.3 - Notatioli

We now introducV aome no;,,ti',n and eoiventV.ons uhat w.I be used'later in the

discussion of profiles. Firmer, we clas.y the su;'Iae irv;ervmc whict compost: a profile. A

given interval will fall in', one or OLkrc.u classeos wcc.ordif:Lt; to whether it is visible to, the

left camera only, to t0- ight cain.v a wnly or to both canreras. Ti&e class r;isible to both

can further be divided ii#to four gi, up::; accor(&.iqj- tbo th. ,' isibilit) of the e-ges that forin

its endpoints. Thus we 4tave six ty ieu of pro(ie iniervsa,!i:

1) The surface Ond both ecgcs are vibjte to b(L, cairierns.

2) The surfaceIand its lef'1, edge arc vi iblte to h]thi cantcraw, but its rig;ht

edge is occ¢uded-

3) The surfact is visible onwy t o th e, ei L camer a

4) The surfac• is visible cmny to thi riHht ,at re 'a.

5) The surface and its -V'g1rt adge ..L'e visible t) both camoras, but Its left

edge is cccluded.

6) The su" ice is visbIle t( both .:..,•ieras, bv i, itk, le't anti right edges are

occludcd.

I' _
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Figure 2-7 illustrates the coordinate system for proffles, showing a lattice for a

profile with three edges visible to the left. and three edges visible to the right. Lattice

points are identified by ordered pairs, (a, b), where a is the right camera ray number and

b is the left camera ray number. The intervals are identified by ordered triples, (a, b, c),

defined as:

a) Right camera ray at right end of interval.

b) Left camera ray at right end of interval.

c) Type of interval (one of the six described above).

Notice that type 3 intervals are aligned with rays from the right camera, thus are invisible

to it. Similarly, type 4 intervals are aligned with left camera rays. Types 1, 2, 5 and 6

are aligned so as to be visible to both cameras.

The stereo zone in Figure 2-7 includes only nine lattice points, the intersections

of L1, L2, L3 with R1, R2, R3. In general, a profile starts somewhere to the left of Li

and R1 and ends somewhere to the right of L3 and R3. It may enter the stereo zone at

any point on the left and leave at any point on the right, or, if the images don't overlap,

it may not enter at all. In effect, the edge of the image serves as a surface which can

occlude features in the scene. We term this effect windowing and have added rays LO,

L4, RO, and R4 to represent it. The mechanism of expanding the lattice by une in each

direction allows us to describe all the windowing effects in a convenient way. Intervals

which are occluded by windowing effects simply appear along one of the four added rays.

Thus, we may assume all profiles begin and end at special intervals (0, 0, 1) and (5, 5, 1),

which are not themselves visible to either camera.

So far, we have discussed profile intervalo whose edges are always on lattice pointe.

This is actually true only for intervals whose edges have no degrees of freedom, i.e., are

visible to both cameras and thus must be fixed in space. If an edge is visible to only one

camera, it has one degree or freedom; it is free to sfide along the ray from the camera

_____
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that can see it. Usually its range is bounded by a ray from the other camera, above which

it would cease to be occluded.

Some edges, due to windowing effects, are free to slide in either direction

indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither

camera. This happens at the start or end of the whole profile, or in the case where an in-

* visible joint must occur between two adjacent intervals that are required to have different

* Islopes. (See the valley traneitiovz in next section). Usually, the two degrees of freedom are

bounded by left and right ray.- with the result that the point may occur anywhere within

an infinite wedge defined by those rays.

Thus, profiles which contain degrees of freedom are actually families of profiles,

all of which have identical interval types and which produce identical images. We present

the following notation for representing such a family of equivalent profiles. See Figure

2-8 for some examples.

A fully constrained point is indicated by a dot. A point with one degree of freedom

is drawn at the limiting position with an arrow pointed in the direction in which the point

may slide. If the point's rarge is unbounded, two opposing arrows are used. If a point

has two degrees of freedom, the arrows are drawn to define the wedge in which it may be

located, and the point is drawn at the vertex of the wedge. Finally, it may occur that two

different edges are drawn at the same position, one with a dot and one with an arrow.

In this case, the direction of the arrow will make it clear which edge belongs to which

surface. In visualizing these profiles, you should imagine an elastic string tied to the fixed

dots, but frec to be pulled along any of the arrows. The result will be a continuous proffle

which when viewed by the two cameras3 will produce the original sequences.
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IL3 I

Figure 2-7: Thc coordinate system used for profiles is based on rays f~rom
each of the camecras, passing through features (edges) in the scene, and
through image boundaries. The rays form a lattice o'f intersection points
that cover the stereo zone. Profile intervalts join lattice points from left. to
right, with most points having three nearest neigh bors on each side.
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that can see it. Usually its range is bounded by a ray from the other camera, above which

F it would ccase to be occluded.

Some edges, due to windowing effects, are free to slide in either direction

indefinitely. Finally, an edge may have two degrees of freedom if it is visible to neither

camera. This happens at the start or end of the whole profile, or in the case where an in-

visible joint must occur between two adjacent intervals that are required to have different

slopes. (See the valley transition in next section). Usually, the two degrees of freedom are

bounded by left and right rays with the result that the point may occur anywhere within

an infinite wedge defined by those rays.

Thus, profiles which contain degrees of freedom are actually families of profiles,

all of which have identical interval types and which produce identical images. We present

the following notation for representing such a family of equivalent profiles. See Figure

2-8 for some examples.

A fully constrained point N~ indicated by a dot. A poin~t with one degree of freedom

is drawn at the limiting position with an arrow pointed in the direction in which the point

may slide. If the point's range is unbounded, two opposing arrows are used. If a point

has two degrees of freedom, the arrows are drawn to define the wedge in wvhich it may be

located, and the point is drawn at the vertex of the wedge. Finally, It may occut that two

different edges are drawn at tbe same position, one with a dot and one with an arrow.

In this case, the dijrection of the arrow will mpke it clear which edge belongs to which

surface. In visualizing these profiles, you s~'ould imagine an elastic string tied to the fixed

dots, but free to be pulled along any of the arrows. TChe result will be a continuous profile

which when viewed by the two cameras will p wzethe original sequences.

A&, LZA
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Figure 2-8: Two examples or profiles indicating the notation for various

interival types. The dots represent fully constrained feature point' that are
fixed in space. The arrows represent degrees of freedom - a feature may
"slide" in the direction indicated without changing the projected image.S j
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2.2 Constraints

Figure 2-9 is an exai..ple of reconstructing a profile from epipolar lines. The

L dotted lincs at the top of the figure represent epipolar lin-s in the left and right views of

a stereo image. If we extract these lines, together with the image line intersections, we

can then back-project to get our grid. The task then is to reconstruct a profile passing

through the lattice points of the grid. The particular profile shown is the one we had

in mind when drawing the original images, but in general we must identify the correct

match from all p,•ssible matches. At this point geometric constraints enter the discussion.

Some matches imply unlikely geometry in the scene; others are simply impossible

under our basic assumptions. Several useful constraints are suggested by this example.

The length of the intervals between intersection points can be used, as short intervals are

more likely matches for other short intervals. A good match criterion is edge angles, i.e.,

the angle of the image lines where they intersect the epipolar line. On this basis alone,

L4 should match R3. The length of the extendcd edges would help distinguish L3 from

L2 as a match for R2,

In this section we discuss several of these constraints and attempt to quantify

them for use in evaluating a match. The evaluation rnction thus developed will be used

in the dynamic programming algorithm to provide solutions to one-dimensional stereo

matching problems.

I
* a
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Figure 2-9: Two epipolar lines are indicated in the sample stereo imagei ~at the top. B~elow the image, and to the same scale, these lines are strippedI
S~~of all information but the edge intersection points and the angles o1" tfiose,

intersections. The profile shown is one or" many possible reconstructiona
:6 from this data.

A
'if _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _L
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2,2.1 - Occlusion

The prof~le in Figure 2-9 has been labeled with the ordered triples we use to

identify intervals. These labels cannot be assigned arbitrarily. In particular, consider L2,

the second edge in the left image. We are interpreting that edge as visible only to the

left camera; there is no edge in the right image to match it. In order to block this edge

from view, the surface extending from it toward the right, (2,3,3), must have a slope

greater than or equal to the slope of ray R2 (type 3). On the left. side of that same edge,

the interval (2,2, 2), which is in part visible to both czmeras, must have its right edge

occluded (type 2). Thus the premise that edge L2 is occluded has placed constraints on

its adjacent surfacee or intervals.

We now consider all possible joints or tranaitions between two intervals. If we

look at only the part of an interval next to the transition, we find that our six interval

types lead to four possibilities:

.1) surface visible to both, edge visible to both,

2) surface visible to both, edge visible to only one,

3) surface visible to right only,

4) surface visible to left only.

It we made these choices independently on each side of a edge, there would be

sixteen transition types. However, occlusion constraints make five of these types impossible

'inder our assumptions. They are excluded because either there would be no surface to

occlude an edge which shouldn't be visible, or there would be a surface that must occlude

a edge that should be visible. The remaining eleven transitions are illustrated in Figure

9-10. Again, the dots indicate edges visible in both views, and arrows indicate degrees of

11 iiedom. Note the two dcgrees of freedom in a valley, where a joint m ust be present, but
is visible to neither camera. Also, in a right cliff, for example, the interpretation is that

the visible edge belongs to the left surface, while the right surface is free to slide along

the arrow. We hypothesize an invisible surface and joint connecting the two to preserve

* I, profile continuity.

'7, -7
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: ~Figure 2-10: Eleven transition types satisf'y the occlusion constraint. In
our notation, these are 'the only interval types that may be adjacent i a

profile.
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2.2.2 -- Edge Intervals

Given an object surface, its image at a particula;. epipolar line will generally

consist of two bounding edges and the interval between themr. If the object surface Is

visible to both cameras, there will be a corresponding interval in each image. The lengths

of these intervals are related to the angle of the surface and to the camera geometry.

The lengths can tak3 on any values, but for moderate or sm&ll baselines they are usually

comparable. In this section we describe a method for quantifying this relation; the next

section presents the detailed mathematics.

Under our assumptions, each epipolar plane cuts a continuous profile in the scene.

Now consider the case where the profile consists of a central small surface flanked by two

larger ones extending off to the left and right (see Figure 2-11). We want to vary the

orientation of the small surface and see what happens to its image. In general, the left

and right images will show an interval between two edges. The length of t.he interval will

depend on the orientation of the surface and its position with respect to the cameras. For

some orientations, one of the edges may be occluded and the small surface may not be

visible.

We see immediately that there is a simple fu1action mapping orientation, 11, to

projected interval lengths, pi and p,. Since we are working to reconstruct the scene from

the image, we need an inverse function mapping some image parameter to 0. To do this,

we define a ratio, R p/pl. This has the advantage of reducing the information from the

image interval lengths into a single number while 'nliminating the dependency on segment

length, d. (The derivation is presented in the next section.) Now we can easily invert the

function and take the derivative. The resulting dO/dR is a scale factor which indicates

how much a unit length in "R-space' is stretched in mapping to "0-space". This allows

us to translate probability densities. For example, suppose an interval ratio a maps to an
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orientation A, the derivative of the mapping at a is D(a), and the probability density at

or-entation A is P(A). Then the probability density for ratio a is D(a)P(A).

The derivative D is normalized and plotted against R in Figure 2-12a. 0 ranges

from -90 to +90 degrees while the domain of R extends from -oo to +00. A ratio

of zero corresponds to a surface exactly in line with the right camera, while a ratio of

±oo corresponds to alignment with the left camera. Negative ratios result, when the

burl'ace presents a different face to each camera. If the surfaces arc opaque, this condition

corresponds to occlusion.

Given this mapping, we are now able to translate probability disttibutions in one

dom,%in to probability distributions in the other. For example, we are interested in the

following problem: assuming a particular distribution of surface angles in the scene, what

0,'

X

I I,

/I * %

I" I

7. ii • % i

Ii

H Ho

Figure 2-11: The calculation of the Edge Interval Constraint is based on
the camera geometry shown here, viewed along the y-axis. The ratio of

j projected image intervals, pr/Pl, is a hinction o stirface orientation, 10.
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dist'ribution of interval length ratios can be expected in the image? Knowing the answer

to this question will help to discriminate among potential stereo matches.

If we assume that the small segment in Figure 2-11 takes on all orientations

uniformly, then D eractly equals the probability density for interval ratios. Thc pcak near

R = 1 indicates that under such an assumption, most inte vals tend to have comparable

lengths. This peak becomes much sharper for narrower baselines (see Figure 2-12). Human

stereo at a range of 1 meter uses a baseline of B/z =- 0.07. With that geometry, half of all

ratios lie between 0.93 and 1.07. Note that integrating the probability function between

-oo and 0 gives the range of angles for which occlusion may occur. When normaliged,

this is the probability of occlusion.

D

Figure 2-12: Probability density is plotted against interval length ratio to
show which ratios are most likely to occur. The curves peak near R = 1,
indicating that the lengths in the two images are most likely to be very
similar. The shape of the curves varies with the camera geometry. In
this Figure, the more sharply peaked curve results from a narrow baseline
(Blz = .07), while the broader curve is for a wid,ý baseline (11/z = .2). The
same two curves have been scaled in b to satisfy the symmetry condition
that requires identical values for ratios that, are inverses.

I!
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There is one problem with using the results of Figure 2-12a directly. While the

function gives the true probability density per unit R, dR is a nonuniform unit varying In

length from 0 to oo. Consequently, orientations which are simple reflections, i.e., 0 and

-t9, yield different values. To adjust for this, we scale the derivative by a factor of R,

yieldhig the function in Figure 2-12b. This function satisfies the conditions of symmetry,

in that symmetric orientations now have identical values. Another way to get this same

result is to use log R as the image parameter and take the derivative of 0 with respect to

log R.

|2..2.3 - Interval Constraint Deriato

Referring to Figur. 2-11, we assume that z, z, B, d, and 19 are given. The

projected interval lengths, pi and p, are deerniined.

pga/f + z z
dcosO+ x dsin9+ x

fd zcosO- xsinO (2-1)
z dsinO + z

Prz/f - (B - X =-

fdcos 0 - (B - x) d sin 9 + z

fd zcos( +(B-x sinO+-

P- z dsint0+z

4 ,-i, l~ill'tllm m, ,m.-
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Letting R = pr/pl, a - B Iz and 6 =- :

8 o 0 + ,3 sin V X-• sin 19
R o -ýco•n

cotI9 - z/X

+- t o ' (2 -3)

Now we need 0 as a function or R:

I=cot-'V - b .(2 -4)

This gives a function mapping the iWagc parameter R =pr/pL to the object

space parameter 0. The mapping of probability dansitiem requires the derivative of this

function. Using-

d1 dud 1o-u 142 dz

we substitute to find:

diO
D(R) ( + b(IR - 1))2 4 (R - 1)2  (2-5)

As noted in the text, D Is riot symmetrical in i z use of I? for the Case where the

object is halfway between the two •arnmras (b .5a). By noting that daR/dlogR -R

we have:

di-9 %R
=- dlo! (a + b,/- ) 2 +(R- 1)" (2 --C6)

S-
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This function is symmetrical in R (D'(1/R) - D'(R)) whenever b = .5a, as shown by:

a/R aR

(a + .5a(1/R - 1))2 + (11R - 1)2 (aR - .5a(R - 1))2 + (R - 1)2

aR

(a +.Sa(R - 1))2 + (R?- 1)2

Finally, we locate the extrema of this fiuction by taking the first derivative:

dD' a2 2

SD (-(b 2 + 1)R 2 + (a -b)
2 + 1).

dR - ((a + b(R - 1))2 + (R - 1)2)2

Setting this equal to zero and solving for R gives the values for which D'(R) reaches a

maximum and minimum:

t+ (a - b)22-7R=+ ~~ P7 27

2.2.4 - Edge Angles

Given a corresponding pair of edge curves, one in the left image and one in the

right image, we are interested in how their angles are related (or mcre precisely, the angle

of intersection with a given epipolar !iae). In general, trhe two anglc• may take on any

values, but we intuitively expect them usually to be similar, especially for moderate or

small baselines. This is in fact the case, as we will now show. (The next section will give

the detailed derivation.)

Consider an object edge passing through a scene point (O,y,z). The edge at

that point has an orientation in three dimensions which can be characteuized ar a point

Vi
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on the surface of a unit sphere, whose origin is (x, y, z). This is known as the gauaaian

sphere, and points are located on its surface in terms of spherical coordinates 0 and jp

(see Figure 2-13). The spherical coordinate axis is parallel to the z axis and 0 corresponds

to longitude, measured counter-clockwise from the z axis when viewed from the cameras.

p corresponds to latitude and is measured from the sphere's axis.

The object edge projects to a line intersecting the epipolar lines in the two images

determined by (z; V, z). Let the angle of the image curve in the left image be 01 and in

the right, image be O,, measured counter-clockwise from the x axis. A continuous function

maps p:inOs on the gaussian sphere to pairs of image angles, (0, 0,). Similarly, there is an

Sinverae function which maps points in the space 01 X O0 to points on the gaussian sphere.

This inverse function is defined everywhere except at (0, 0). This is because the great

circle of points on the sphere for which 0 = 0 all map to (0, 0), and the function is not

invertible at that point.

This inverse function allows us to translate probability distributions in one

domain to probability distributions in the other. If, for example, there is a uniform

distribution on the gaussian sphere, we could calculate the expected distribution of image

angles. In other words, ir all object edges are randomly and uniformly distributed in

orientation, are some combinations of (01, 0) more likely than others?

We know the mapping from 01 X 0, to 0 X Vo. The determinart of the matrix

of partial derivatives (Jacobian matrix) is the scale factor for area under the mapping,

and thus is the scale factor for probability density. Suppose point (a, b) in 01 X 0, maps

to (A, B) in 0 X v, and that the determinant of the Jacobian at (a, b) is D(a, b). Then a

small patch around (a, b) maps to a patch around (A, B) with D(a, b) sin Vo times the area.

The sin V term compensates for the area distortion of the spherical coordinates. If the

probability density at (A, B) is P(A, B), then the probability density at (a, b) is

J)(a, b)P(A, B) sin r
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Figure 2-13: The calculation oC the edge angie constraint, is based on thle
camera geometry shown here. The irmage angles, 01 and 6,j are functions of
the edge orientation given by spherical coordinates 0 and ip
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Figures 2-14a and 2-14b show the function D plotted for a stereo baseline typical

of aerial photographs, B/z = 0.7. For the uniform distribution assumption, this surface

corresponds directly to probability distribution over 01 X Or. The surface forms a high,

narrow saddle along the line 01 = 0,, with a singularity at (0, 0). This corresponds to

the intuitive notion that left and right angles are usually similar, but the sharpDess is

surprising. Half width at half m ximum (HWHM) at the center is 300. As Figures 2-

14c and 2-14d show, probability functions for narrower baselines are even sharper. For

B/z = 0.07, which corresponds to human vision at a range of about 1 meter, the HWHM

at the center is 30.

Another way of looking at the data is to consider the distribution of "wrong

matches". Suppose we choose an edge at random from the left and from the right, and try

to interpret them as corresponding. If we do this for a large set of edges we will produce

a distribution of cdges in 3 dimensions, i.e., on the surface of the gaussian sphere. The

nature of the distribution will depend on the distributions of 01 and Or.

We originally assumed a uniform distribution over the gaussian sphere. For this

case, it is easy to show that O1 and 0r are also uniformly distributed. For each value of

01 in the image, there is a corresponding set of points on the gausslan sphere. This set of

points forms a great circle, that iW, a circle of unit radius. The probability of a particular

value of O0 occuring depends on the integral of the gaussian sphere probability distribution

over that circle. If we assume a uniform distribution on the sphere, then all circles will

yield identical integrals. Similarly, 0, will be uniformly distributed.

If we choose unrelated left and right edges from these uniform distributions and

project back to the gaussian sphere, we get the distributions chown in Figure 2-15. The

* €distributions, which are actually on the surface of the sphere, have been cut in half awid

projected onto the plane of the image for display. The xesult is a fharply double peaked
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XY X y

A) B)

Figure 3-15: If edges from the left and right images we, e matched at
random, the 3-dimensional orientations of the reconstructed scene edges

would be distinctly non-uniform. A uniform distribution of image edge
angles maps to a distribution on the gaussian sphere that is strongly peaked
along the line of sight ofr the two cameras. Surfaces a and b result from
baselines of B/z = .7 and B/z = .07, respectively.

distribution, with each peak oriented toward (and the missing half away from) a camera.

This violates the assumption that the scene should be independent of the observer. Such

a distribution could be used to identify wrong matches.

Figure 2-15a results from a wide baseline of B/z = .7. The twin peaks are quite

clear in this graph; each contains a singularity at V- = 19.290 (tan po = .35) and 9 =- 00

or 0 = 1800 that has been clipped to limit the height of the graph. The distribution has

a value of zero along the "equator" where 0 = 0* or 1800, and a value of .7 at the "poles"

where 0 = ±90. This rises to a value of 5.6 at the saddle between the peaks.

Figure 2-15b, based on B/z = .07, is similar in shape but more extreme in value.

It is graphed at the same wcale as Figure 2-15a for comparison. The singularities are o-.

LJ

MEK.



SAutoMatd Stewo Perception Theory §2.5.5 88
f

the equator at p 2.000 (tan vo .035) and the poles have a value of .07. The peaks

are not separated at this scale since the saddle between them hao a value of 525.

2.2.5 - Angle Constraint Derivation

Refer to Figure 2-13 for geometry of this derivation. We wish to derive the

function mapping 01 X 0, 1-+ 0 X o, where

0 < 01, 0, < 7r

0 < 0, < 7r
O L0 < 7r.

The approach is to convert to rectangular coordinates, do the stereo projections, and

converL Lo spherical coordinates. The stereo projections are given by

(XI, = (Lw, 4,t)

(xM, Yry, z) = (L(i - B),f y, f),

and the inverse projections are given by

fB

X1 - Xr

f l•L= j-r + B ,
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where:

f is the image length,

B is the base line,

(x, I, z) is a point on the object,

(zi, yl, zi) is a point in the left image, and
( 2r, P z7 ) is a point in the right image.

Now consider a unit vector in the left image, centered at (xi, yl), at angle 0. The

tip of the vector has coordinates

X1 X1z + Cos at

Y1 -- yj + sin 01.

From epipolar geometry, we knov the points in the right image corresponding to the

endpoints of the vector will have the same y-coordinates. Thus, the length of the vector

in the right image must be sin 01/ sin 0,, and

- sin 01
a r X-- Xr + tan Or

V' , y, + sin 01,

where 01 is the angle in the left image plane and 0, is the angle in the right image plane.

We now "averse: 'ect to get the points (X, y, z) and (x', y', z') in object space,

the origin and tip of the vector respectively. Note that this vector will not have unit

*_.4

I _ _ _ _ _ _ _ _
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length, but its orientation will supply the correct value for 0 and •o. The values z' - z,

II -- y, and z' - z will be needed:

z/

z- = -(XI + Cos 0) - T,

rB( ._l + CosO _ X1

X1 xr + cos 01 - X1 -xZr)

Sy• - y= BYj + sin 01 y1

X xt-X1r +cos- _ 1 -- Xr

z' ~zfB( ir
X1 --X, + Cos O1 -2. •nlll• I l X1 xr

t nt

To simplify further calculations, we use the following substitutions:

Q B

(XI - X')(XL - X, + ZOE00 - a5 n a

tan 0,

V (X r - Z) sino 01 - Cos, •) ,1(C5 tan 0,
x/

S-----fcos -tan 0,

Then x- x QU, _I QV, and z'-z QW and we can easily convert to spherical

A W--
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coordinates:

G = tan-' -_ = tan-' (2-8)

Cp - os- . ...
/ X-)2 + (y' y)2 + (Z_ Z)2

+c -I . (2-9)V/U +-• + W.

This completes the derivation of a function mapping image parameters O0 and 6,

i • to object space parameters 0 and Vo. The mapping of probability densities requires the

derivative of this function, or more precisely, the determinant of the Jacobian matrix.

The Jacobian matrix is given by:

I: -

To calculate these values, we will need the partial derivatives of U, V, and W:

.(1rVoOLY (Sn + )o O
00 -(xi - zn)Osin 01 + z sin 01 + c--,.)

av (_cs o

o- =( XI - X•') Cos o, + YJ in, 01 + Co 0'

9Wo._ -" fsin O1 + •cos O01'

O9U -xi sin 01

40r sin 2 Or

49V -VI sin 01
i 9O " sin• 2o r

0OW s-f in Og
900r sin 2 o0

_________

,
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*Now we have

" Substttin = Oz tan U +V "

Substituting d VUr-+ VI + W 2 , we have

ad U -U+V +WV

ax u 2 +V2 +W2

a• -o w w_ W -dW
a9X d d V-0 2 --

W(U+v + VK+ WW)- •(U 2 + V2 + W2)
(U2 + V2 + W2)V/U2 +V2

We can calculate the components of the Jacobian matrix by substituting 01 or Or for z.

Tie deLerininauL its Ihen

C70 49(p a0 o 12 - 10

D(O, Or) = det J = 0080,- (2-10)0 "

Finally, this probability scale factor must be corrected for the area distortion of the V
spherical coordinates:

scale factor = D(01,,O)siny. (2-11)

This function is plotted in Figure 2-14 for different camera parameters. The

resulting saddle-shaped surfaces have been numerically integrated to give a volume of

about 2w, or an average value for the function of 2/w.
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*,2.6 - Edge x'xtent

The extent of an image -urve can be useful In evaluating matches, subject to

certain limitations. We define extent as the difference in y-coord'nates of the two end

pointt of a curve. This measure, even more than edge angle, involves two-dimensional

information, but we believe in using constraints as early in the processing as possible,

provided there is a clear way to apply them. Ideally, image features in isolation should

have identical extents. This is due to the normal camera model we have chosen, where

stereo disparity occurs in the x direction only. Several things can modify this, however.

I Inaccuracies in the stereo camera model can cause deviations in the projected position

of the endpoints. If the images differ by a scale-factor, the difference in extents for a

matched edge pair will aiso depend on the magnitude of the extent.

Edge extent can be measured only where both end points are visible to both

cameras. However, for some occlusions, we can derive an inequality condition, which

still may be used to discredit a match. We assume occlusions from the presence of

a T-junction, which Binford and Lowe [Binford 1981, Lowe 1981] have shown may be

considered a necessary condition for occlusion of a curve. Figure 2-16 illustrates four

potential matches, two of which satisfy the inequality and two of which don't.

Finally, image curve aegmentation can cause problems. Segmentation means

breaking a long complex curve into simpler pieces, connected end to end. Since cor-

responding curves in the two views are segmented independently, corresponding pieces

may have different extents. This may be compensated or at least recognized by examin-

iug the junctions at the ends of an image curve. A 2-junction with similar curve may

suggest a segmentation problem, especially if the tangents or curvatures are similar at

* that point.

-AL
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A) B)

C) D)
LEFT RIGHT LEFT RIGHT I

Figure 2-16: Slanted T-junctions can mean that an edge's extent is known
only to an inequality, but this is suflicieut to reject some matches. The
stereo pairs shown in b and d are possible matches; those in a and c are

not.

2.2.7 - Additionai ConstraintA

Image intensities can be used as a match criterion, although they have many

drawbaeks, as discussed in the introduction. Still, with a proper allowance for error, they

can help to resolve some ambiguities. We have used a simple measure based on average

brightness across the interval, but a more sophisticated approach might use area-bazed

correlation with image curves as boundaries.

Other geometric constraints may be taken front the vertices of image curves. For

S~example, if a curve terminates in a 3-vertex in t~he left image, there are only certain types
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of 2- or 3-vertices in the right image that could match it. This type of constraint can

be very strong in certain restricted scene domains, like right parallelepipeds, but some

constraints apply also to general sce.nes. We havw not yet made use of this type of measure.

ik

-
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2.3 Dynamic Programming

Dynamic programming is a techniique useful for matching two sequences. A

typical application is in speech recognition, where one of the sequences is the model of

a spoken word, and the other is the enceded signal derived from a microphone. Various

portions or phonemes may be stret.ched or compressed, but the continuous flow of t ne

guarantees that no two components will be out of order in one sequence relative to the

other. Dynamic programming attempts to map one sequence onto the other, subject to

these constraints.

2.3.1 - Introdiiction to the Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm which finds a "best"

match from among all the allowable matches. Figure 2-17 illustrates this algorithm

applied to a simple problem. The sequences to be matched, {Li} and {Ri}, define the two

dimensions of a matrix; each entry is determined by a pair of elements, one from each

sequence. A function is defined on this matrix such that each ez'.y represents the cost

of matching that pair of elements. This function measures the dissimilarity of the two

elements. A path will consist of a sequence of nodes, each of which corresponds to one

entry in the matrix. The goal is to find a path through the cost matrix such that the sum

of the costs along the path is a miniruum.

To do this we need to define a set of transition rules that specify the allowable

successors to a given node on a path. These rules may be derived from constraints on the

original problem. For example, assume the following constraints:

* The sequences must be matched monotonically.

*Every element of each sequence must be used at, least once.

These constraints are equivalent to assuming that the path must start in the lower left

corner and ead in the upper right, and that from each node, a transition may only be

made one unit vertically, horizontally, or diagonally.ItI
- - >-.,..~ '-V
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Figure 2-17: The Viterbi algorithm finds the best path through a cost
matrix such as the one illustrated in a. Ia-" transition or the path may
be up one unit, right one unit or both. A second matrix (shown partially

completed in b) is constructed giving for each element the lowest cost of
a path from the start (1,1) to that element. When the second matrix is
complete (as in d), the entry in the top right corner gives the minimum cost,
and the corresponding path can be traced backward.

SIt,

K _ _ lII___--___:Z.
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The Viterbi algorithm proceeds by constructing a second matrix, of the same

dimensionb as the first, each of whose entries is defined as:

The accumulated cost of the lowest cost path from the starting

node to the node corresponding to this entry.

The matrix values are filled in ascending erder, left to right and bottom to top, beginning

at the lower left. The transition rules guarantee that when it comes time to fill an entry its

three predecessors will already have been assigned values. The algorithm simply examines

each of these predecessors, adds the cost for the current position (from the cost matrix),

and selects the lowest sutm. This sum becomes the value for the current entry, and a

pointer is stored to indicate which predecessor was selected.

Figure 2-17b shows " partially filled matrix. The filling began with entry (1, 1),

wh'ch, having no predecessors is simply assigned the corresponding cost matrix value or

5. For the rest of row I and column 1, two transition types don't apply, so only horizontal

or vertical tr.ansitions, respectively, are used. In Figure 2-17b, the next entry to be filled

is (3, 4), whose cost is 5. The algorithm compares 14 + 5, 6 + 5, and 14 + 5, corresponding

to vertical, horizontal, and diagonal transitions, and selects the second, filling in value 11

and a pointer back to (3,3). Note that two or more predecessors may produce the same

minimal score. If our purpose is only to discover an optimal path, we may choose any one

of them to store as cur pointer. The case of more than one optimal path is best handled

by the Viterbi extension described later.

After the last position has been filled, the stored pointers are followed backward

to the starting node, tracing out the optimum path from the upper right to the lower left.

Figures 2-17c and 2-17d show the final path.

In applications dealing with very long or infinite sequences, it is potsible to

truncate the best paths to some depth a [Forney 1973]. This corresponds to choosing

a single node to represent the previous history of the sequence, and continuing to explore

L
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all possible paths out from that node. In most cases, a may be chosen such that the best

path for each node under current consideration passes through the same node o steps

back. Thus, the graph may be truncated and no information will be lost. This technique
limits the working matrix to a manageable size. However, our application has used only

relatively short sequences, and we do not use a truncating Viterbi algorithm.

2.3.2 - Modifications for Stereo

We now discuss some modifications to the Viterbi algorithm to make it more

suitable for the stereo matching problem. Because we must allow for occlusion, it is

possible that certain sequence elements may have no match in the other sequence. Thus,

we will use an algorithm with the following c-onstraints:

*The sequences must be matched monotonically.

* Each element of a sequence is used at most once.

The question arises of how to assign a cost to an unmatcheu element. It certainly

should not be zero, or the optimal path would be one where none of the elements of

either sequence were matched. Instead of assigning an arbitrary high cost to unmatched

elements, we have redefined the problem slightly. We replace the cost matrix with a

rimilarsty matrix and look for a path of maximum similarity, rather than minimum

dissimilarity. Each matrix entry is a measure of how well two elements match, and

unmatched elementz may be assigned a zero, score. A set of transition rules which

implements this i'o•lows:

*Vertical or horizontal transitions of one unit indicate occlusion

of the element whose row or column is being entered.

*Diagonal transitions of one unit indicate a normal match associat-

ing the elements belonging to the newly entered row and column.

r Note that with these definitions an isolated node no longer represents a match; the type

S* of transition leading to the node is part of the representation.

I7
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I The algorithm is modified to select the maximum rather than minimum value

for filling a new entry, and the cost for the current position is only added for, diagonal

I transitions. We will illustrate this with an example shortly.

Finaliy, it is desirable to eliminate the restriction that the path always runs from

the lower left to the upper right. It is possible that the first or last few elements of a

sequence are unmatched. This corresponds to allowing paths to begin at any point in the

first row or column and end at any point in the last row or column. We already have a

mechanism for skipping unmatched elements (vertical and horizontal transitions), which

is equivalent to the ending condition. The simple trick of adding a zeroth row and column

allows the same mechanism to provide the beginning condition as well. Any entry in the

first row or column may now be the effective start of the path since it may be entered on

the diagonal from the zeroth row or column. The algorithm proceeds from the lower left

to the upper right as before.

Figure 2418 illustrates the modified Viterbi algorithm, finding the maximum

scoring path subject to the above constraints. Figure 2-18b shows a partially filled matrix,

where the next entry to be filled is (3, 4), whose similarity score is 5. The comparisons to

j be made are 13 + 0, 16 + 0, and 13 + 5, corresponding to vertical, horizontal, and diagonal

transitions respectively. The maximum value, 18, is stored with a pointer back to (2, 3).

Figure 2-18c and 2-18d show the optimal path, traced back from the pointers. Note that

* the elements corresponding to row 1 and column 3 are not assigned a mnatch.
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S~Figure 2-18: The stereo Viterbi algorithm differs from that in Figure 2-17

i ~in three ways. The cost matrix is replaced by a similarityl matrix and the
I path of highest similarity measure is found. The same three transition types
; ~are allowed, but only diagonal transitions accumnulate a score. A special row

S~and column are added so that (1,I) need not be on the path. The partially
•: and fully complete second matrices are shown in b and d. The ,atrix at c

S~shows the four elernents thai, were assigned stereo matches.
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2.3.3 - Extension to the Viterbi Algorithm

In the dynamic programming literature there are several algorithms for deter-

mining the "k-best" paths through an arbitrary directed graph. Hoffman and Pauley

[Hoffman 1059] first published an algorithm whose application was finding the k shortest

routes through the streets of Detroit. A conventional shortest path algorithm was run

first to determine the best path to the terminal node from all other nodes in the graph.

Alternate paths were calculated as deviations from this path. In other words, an optimal

path was followed up to some node A, at which point a non-optimal branch (deviation)

to B was taken. From B, the best path to the terminal node was followed. This process

was repeated, as the third best path must be some deviation of the beIt or second best.

An improvement to this algorithm was published as part of a survey by Dreyfus

[Dreyfus 1969], and this algorithm was itself subsequently improved by Fox [Fox 19731.

All of these algorithms produce one new oath per iteration, each iteration requiring

computation proportional to the number of nodes in the graph.

Any of these algorithms could be applied to the iuodified Viterbi algorithm just

presented, since the Viterbi operates on what may be considered a directed graph, where

each node has no more than three branches leading in and three leading out (vertical,

horizontal, and diagonal). However, we have developed a more efficient algorithm that

allows determination of all paths scoring within E of the optimum, where c is a threshold

that may be chosen after the optimun. is known. As discussed, the principal idea is to

explore the aternate paths in addition to following the back pointers of the optimal path.

To permit this, the choices at every decision point in the algorithm are stored.

The choices are represented by the partial path similarity scores for each of the possible

predecessors at a node. These sums may be stored explicitly or they may be recalculated

during the search. In the examples presented above, recalculation is easy rtom the mnatrix

of partial paths. Similarly, the back pointer that selects the maximum choice at each

_ _ _ _ _ _ _ _ _ _ _ _ _ 
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node may be stored or recomputed, since ail the original information is present. The

tradeoff is simply one of storage against time, since the recalculation may have to be done

several times for each node.

Figure 2-19 illustrates the search algorithm. We assume that the modified Viterbi

algorithm of the previous section has run on the data of Figure 2-18, and filled in the

matrix of partial path scores. We iequire ; stack with enough storage to hold all of the

paths that score within c of the optimal. This amount of storage will be the sum of the

lengths of such paths, where length is in nodes, and a node is represented by an ordered

pair, (row, column). One pr.:-, ;i,, .ddressed here is estimating the number of paths

expected and hence the storagae - i;;Minent.

The example has an optimal path score of 31, and we choose E equal to 5; we

want to find all paths meeting our constraints that score 26 or more. The stack will use

three pointers: one, TS, is the usual top of stack, used for adding paths to the stack; the

other two, SB and SP, are search pointers whi,.h will gradually work from the bottom of

the stack to the top. Initially, the three pointers are at the bottom of the empty stack.

We initialize the stack by storing the optimal path, in reverse order. This path

is determined in-the usual manner by following the matrix back pointers. Along with the

path are stored some additional data (actually stored in a separate 'ndex):

* The re!ative score of this path.

* A marker at the end of the path.

* A marker at the first node yet to be explored.

In Figure 2-19, these are represented iespectively by a number next to the first node, a

bracket, and an asterisk next to the appropriate node. For the first path in the example

(the optimum), the relative score is 0, the path is seven nodes long, and the first node

to be explored is (5, 5). After storing this initial path, pointers SB and SP are at node

(5, 5), and pointer TS is one location beyond node (0, 0).
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The main loop of the algorithm is:

Examine the choices at the node indicated by SP.

Increment SP.

If SP encounters the end of path marker, then

if this is top of stack, then done.

else move SB to first node of next path and move SP to

marked node of next path.
I GbCn tin ue.

GoPnth Score Path Score

sre-ý (5.) * 0 (5,5) 4
(4,4) (4,4)

3P-> (3.3) 3. 3)
(3,2) (3.2)(2.1) (2.1)

(0.0) (0.,0)

(5.5) 4 (5,6) 5
(4,5) 9 (4,4)
(3,4) (3,3)
(2,3) (2,3)
(1.2) (1.2)
(1.1) (0.1) * .
(0.0) (0.0)

(5.5) 2
(4.4)
(4.3) 9

(3.2)
(1.1)
(1.0)

(5.5) 4
(4,4)
(3.4)
(2, 3)'

(2.3) 9

(1.2)
(1.1)
(0,0)

"Figure 2-19: The extension to the stereo Viterbi algorithm finds subop-
"tiual paths. Shown here is the data structure used for the data if) Figure

j 2-18. In a the stack is shown at a point part way through execution. The
remaining entries are shown in b.

LI.~ ~ ~T i771.~.-. __________ -7-_
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Choices are examined in a loop, checking each predecessor, ignoring the one marked with

a back pointer as the maximum. The procedure followed for each predecessor is:

Recalculate the threshold by which this predecessor was rejected (the

difference between this partial path score and the score chosen as max-

imum).

Add that amount to the relative score of the path pointed to by SB.

If that sum exceeds c, then done.

Else store this suboptimal path.

The procedure to store a suboptimal path is:

Copy the path from SB to and including SP onto the tcp of the stack.

Store the predecessor currently being considered onto the stack.

Mark this node with an asterisk.

Continue storing nodes on the stack by following the back pointers of the

matrix until node (0, 0) has been itored.

Store an end of path marker.

Record the relative path score as the sum determined above (the one < c).

In Figare 2-19, the full stack is shown, i.e., after all 7 paths are found, but

the pointers are shown for the state where the 5th path has just been pushed on the

stack. Figure 2-20 shows the 7 paths and their scores. After the search is complete, the

suboptiimal paths on the stack may easily be sorted by relative store.

Note that each path pushed onto the stack consists or three part,: the back end

(higher coordinates) which is always identical to some previous subpath; the alternate

choice transition, or deviation; and the front end, which is given by the matrix pointers.

The back end carries a penalty given by the relative score stored with the path from which

it was copied. The alternate choice transition carries its own penalty, just calculated.

The front end is an unexplored subpath, but its score is optimal because it is determined
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Figure 2-20: Prom thec data in Figure 2-18, seven paths cau be round with
scores of 26 or greater.
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by the back pointers in the partial path i.natrix. Thus, the sum of the back end score

and the current alternate choice transition gives the relative score of the new path. The

mark represented by the asterisk ensures that only the front end of the new path will he

subsequently explored.

The algorithm finds all paths whose score differences are less than or equal to

c, and because it examines only those pat-hs, it is efficient. All copying of paths is done

with a destination pointer of TS, which is incremented after each node is copied. Thus,

the total storage required is equal to the total length of all the paths round. Also, the

examination of each node requires a constant number of comparisons, and for each node

examined an entry is made on the stack, so the computation time will be proportionpl to

the total length of all paths found. This is of order kN, where k is the number of paths

found and N is the shortest path length.

Although our algorithm has only been applied to the results of a Viterbi algo-

rithm, it could be extended to work on a generalized directed graph. The principal

difference between our algorithm and published "k-best" algorithms is that ours finds all

paths within c of the best. There is no way of predicting how many paths will be found

when c is chosen; there is also no guarantee as to the order in which paths will be found.

"IHowever, if a given c results in k paths, coniputation proportional to kN will have been

d(one, rather than kN 2 as in the other algorithms. Note that we use N here to represent

the length of an input sequence, rather than the number of nodes in the graph, which is

N 2 by our definition.

Our algorithm produces suboptimal paths only between the terminal node and

an initial node, whereas k-best algorithms generally produce paths between the terminal

node and all other nodes. Both algorithms require per node storage proportional to the

maximum number of branches into any node. For our Viterbi this is only 3, but. in general,

it would be equal to the number of nodes, N 2 . 1,'inally, the k-best algorithms all have

problems dealing with ties, i.e. disjoint paths having the same score. This is usually

solved by perturbing each branch value with a small random number. Our algorithm has

no such difficulty since it is iiot attempting to order the paths found.
S

S -. -~~~.--- ---v -
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2.3.4 - Application to Stereo

Dr discuss tile application of the extended Viterbi algorithm to stereo matching,

we need to introduce the data structure, the evaluation function that computes the

similarity measure, and the transition rules for stereo.

There are two choices for data structure: surface-based and edge-based. Since

surfaces (intervals) and edges occur alternately within a sequence, they are essentially

equivalent for one-dimensional matching. For our implementation, we have chosen to

represent the nodes as intervals; surface descriptions are the ultimate goal, and intervals

are closer to that than edges. As we will explain later, we have not yet been able to

produce a good surface-based data structure for two-dimensional matching, so the choice

of intervals in the short term may not be best,

Each row of the matrix will be assigned to each interval in the right image

sequence and each column will be assigned to an interval from the left image. As discussed

in a previous section, intervals may be classified into six groups according to visibility

conditions. Each entry in the dynamic programming matrix, will be broken down into six

subnodes, each carrying a different interpretation for that portion of the path. Subnodes

are identified by an ordered triple: (row, column, subnode type).

The transitions between subnodes are limited to those allowed by the occlusion

constraints defined previously. These, together with the coordinate system based on edge

rays, define a space of allowable paths. Subject to the original assumptions, only physically

realizable profiles are allowed. That is, for every allowable path, there is a continuous,

connected profile of straight line segments that will result in the observed left and right

projections.

Figure 2-21 illustrates this space of allowable paths. In the diagram, each hexagon

represents a node; the numbers within the circle represent the allowable subnodes at that

I]
'Iji
I1
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position. Some subnodes are disallowed due to windowing effects. The basic transitions

proceed up, down, and horizontally to the right, corresponding to vertically, horirontally

and diagonally in previous rectangular grids. Given a subnode, a transition out of that

node is allowed only across a hex side labeled on the loft with the currem; subnode number.

A transition across a hex side must terminate in a subnode whose number appears in a

corresponding place on the right oide of the hex side. For example, (1, 2, 4) may precede

(1,3,3) or (2,3,5) but not (1,3, 4) or (2,3,1).

Thus, occlusion conitraints st.rve to reduce the search space from what it would

be if transitions were allowed betwen all subnode types. The rest of the constraints

!I

3 AP 3

3 A, "

G) 6

RIGHT"

I" I Figure 2-21: This diagram• combines the trau,:siion rules for the stereo

Vit¢'.rbi algorit~hm with the strero zorn; and latt.ice arid the ~cch~ision con-

S! straints discussed earliler.
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are incorporated into the evaluation function, which serves as the similarity function in

the previous examples. We do not understand exactly how to construct this function, ]

but from experiments, the performance of the dynamic programming algorithm on real

stereo data seems to be fairly insensitive to minor changes in the function. Thc principal

components of the function are the edge measures, angle and length, and the surface

measures, brightness and interval ratio, discussed in a previous section. Each component

is normalize" to a range of 0 to 1, weighted and combined to give a score for each node.

The strongest constraint got the highest weight. The dynamic programming algorithm

maximizes the sumn of the individual node scores.

We have used both additive and multiplicative combinations of constraint

measures at each node, and have had success with both types. The addition of linear

measures gives a low score only if all the components are low, while multiplication gives

a low score if any component is low. We currently multiply related measures (e.g., edge

angle and extent) and add independent groups (e.g., edges and intervals). TIte evaluation

functiri is discussed in a later section.

The evaluation function depends also on the transition and subnode types. For

subnodes corresponding to occluded surfaces (visible only to one camera), a default

measure must be used, since there are not two intervals to calculate a ratio or brightness

comparison. The default value is currently the approximate probability of a surface being

self-occluded, which is a fuinction of the camera model. Similarly, a default is used for

edges visible to only one camera.

Some ad hoc measures have been used experimentally to favor profiles that are

globally simpler. Long intervals of types 3 or 4 correspond to drastic altitude changes in

the profile. Two different method3 have been tried to penalize profiles containing these

types of intervals. One method is to simply subtract an amount proportional to the

i
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interval length for these types. Another is to calculate excess length. This last has the

advantage of being applicable to matched intervals as well. It is defined as follows:

Sum the interval lengths, both if a match (types 1,2,5,6), otherwise just the

one (type 3,4).

Calculate the minimal length surface in a profile whl.-e projected lengths

add to the above sum.

Subtract this minimal sdrface length from the profile length calculated from

the actual projections.

Thus we try to minimize the length of the profile, compared to its projected length. This

favors smooLh scenes over jagged ones (see Figure 2-22).

A second ad hoc measure is a penalty for surface breaks. Whenever a node is

chosen for )ath, we are constraining the slope of the undcrlying profile surface in some

A) B)

Figure 2-22: A typical pro iflt is jagged as in a. A nmininal flat surface, 6,
can be found whose total projected lengi;h in thc images is equal to that of
profile a. The difference between the total hlngth or all the surface intervals
in a and the length of the surface in b is excess length.

' 1
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way. Some nodes constrain it )ully (type 1), others allow some freedom. Each time a

node is evaluated, the slope constraints are checked. If the new constraints require a slope

discontinuity in the profile, a penalty is added. If the constraints allow the underlying

profile segment io have a continuation of the previous segment's slope, no penalty occurs.

This favors surface markings over surface discontinuities, and profiles with fewer surfaces

over profiles with many.

2.3.5 - Conclusion

The prircipal advantage of the dynamic programming stereo matching is its

ability to combine most of the geometric constraints we have investigated with a strong

global consistency - at least global in the sense of the one-dimensional problem. The

resulting profiles are guaranteed to make geometric sense over the entire epipolar line.

That is, they can be constructed from a connected sequence of line segments and an edge

is present in an image if and only if a corresponding junction of two segments is not

occluded from that camera. We rely on the the evaluation function to select only the best

matches from among the many possible profiles.

The modified Viterbi algorithm is also efficient. If n is the average number of

elements in the sequence, the average path length is of order n. Since there are a constant

number of choices at each node of a path, the total number of possible paths will be

exponential in n. The Viterbi algorithm, however, evaluates these in time and space

proportional to n 2 . As noted, the time and space complexity of the search for suboptimal

paths is linear in the total length of output paths.

The algorithm is required to "explain" every element in each sequence; an element

either matches another, or it is occluded. I1owevwir, this can be a disadvantage when

the input data have missed or extraneous features. These may result from edges near

threshold, movement in the scene between successive views, or inaccurate camera models.
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This algorithm does not account for such imperfect data. For example, instead of ignoring

an extraneous edge, it tries to distort the profile to occlude it, from the other view (see

Figure 3-11). Similarly, distortions are introduced to explain missing edges by providing

an occluding surface.

We have made some attempts to develop an algorithm which could automatically

edit out obvious errors. The number of subnode types could be increased to represent,

erroneous data points. This would allow the dynamic programming algorithm to addi-

tionally assign paths that interpret features as missing or extraneous. However, this would

require a more complex evaluation function and would increase the number of transition

types between subriodes. The storage required to retain all the decision points then in-

creases as the square of the number of subnodes. This added complexity would have made

it impractical to retain the feature of recovering suboptimal paths.

We note that the most common source of errors in an c.pipolar line match has been

alignment failures near the terminations of extended edges. The epipolar line in one view

may just miss a corner that intersects in the other. In such cases, the error disappears

in ,djacent epipolar lines. Also, experiments show that the effect of errors tends to be

localized. Rather severe profile distortions may be required to "occlude" an extra edge,

but one or two elements farther along in the sequence, the profile is undisturbed. This

is because any radical distortions caused by the error tend to be the same in all paths,

so all paths are equally penalized and their relative ranking is unchanged. For these

reasons we have decided to postpone the problem of missing or extraneous edges to the

two-dimensional matching stage, and to try to filter it out there.

Ii
Ii
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2.4 Continuity and Consistency

Except for accidental alignments and occlusions, continuous edges in a scene will

project to continuous edge curves in an image. We define edge curves A and B in an image

to be continuous if there is a sequence of edge curves beginning with A and ending with B

where each adjacent pair of edge curves meet at a vertex which is not a "T-junction" (see

Figure 2-23). The contimnity constraint, then, is that edge curves which are continuous

in one image cannot match discontinuous edge curves in another image. This constraint

can be used to resolve matches that are ambiguous in a small context (see Figure 2-24)

and has been used in earlier stereo systems.

In 1978 we reported [Arnold 1978] results of a stereo system using what we

then termed local context to resolve ambiguities. This system worked from the unlinked

edgel output of the Ilueckel edge operator and used constraints based on edge angle and

brightness measures from the operator. The search space was limited by measuring the

A

/

Figure 2-23: Continiity in the image implies continuity in the scene. "T-
junctions", however, usually itnply a discontinuity in the scene. Thus, A
and C are continuoua while D and J1' are not.

. . . -.--
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camera model as described earlier, and using epipolar geometry. For each edgel, a list

of possible matching edgels was produced (occlusions were not considered). This list was

filtered by a ccntinuity constraint. Continuity was calculated in each image by linking

edgels that were approximately collinear; the constraint required the stereo disparities of

two linked edgels to agree.

This early system suffered from some serious problenis, many of which resulted

from the quality of data produced by the edge operator. However, continuity turned out

to be a surprisingly strong constraint, and the system produced some stereo maps that

clearly separated scene objects from the ground and showed structure within the objects.

A more detailed summary of this work has been included as an appendix to this thesis.

While continuity is a strong constraint, it does not always apply in its simple

form. For example, Figure 2-25 shows a case where edge curves on two epipolar slices are

continuous in one view, but do not have a corresponding pair of continuous curves in the

Figure 2-24: Scene edges will riot, appea•r continuous ia one. stereu image
said discontinuous in another. In this ewaryple, edge curves A and B! on
the first epipolar line mntch unambiguously. On the second epipolar line,
C may rmatch with either D or E. The continuity constraint, resolves this
ambiguity, since A - -and H - E arc continuous while 11- D is not.

C 2
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0 ---- i

Ii'Igure 2-25: The eontinuity constraint provides negative evidence for
the match of C with D. TO express this positively, we say that the stereo

interpretation of C occluded by D is consistent with a match ol'A with B.

other view. The failure to find a match for edge C should not reduce our certainty for U
the match of A with B. On the other hand, an attempted match of C with D may make

sense locally (i.e., on the lower slice), but should be rejected by the continuity constraint,

since B and D are not continuous. Thus, the interpretation of C as occluded by D is

consistent with the interpretation of a match for A - B.

The problem comes in recognizing consistency conditions. Continuity is easily

checked, but more analysis is needed to characterize consistency. We make use of some

simple cases in our implementation, but leave a complete analysis to future work.

NEW
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IMPLEMIENTATION

3.1 Producing the Data

The stereo system we describe here operates on an input file consisting of edge

and intensity data. The intensity data are taken from digitized photographs while the

edges arc produced interactively with a computer drawing progi-am. It is anticipated that

advances in edge-finding and segmentation techniques will allow this process to be fully

automated soon.
I

3.1.1 - The Images

In each of the examples, we begin with a black and white stereo image pair: two

digitized images of the same scene from different viewpoints. The images are from 128 to

512 pixels on a side, and from 6 to 8 bits per pixel. Typically, the overlap permits 60%

or more of each image to be viewed in stereo. The camera model is known imprecisely

or not at all and must be calculated from the images. Part of this calculation is done by

hand and part with computer aid.

The digitized images we use include actual aerial photographs with subjects such

as aircraft at a terminal, and artificial data, where the subject is a simple block model

of a city (see Figure 3-1). In aerial photographs, the camera is typically mounted in an

aircraft to look straight down and the two photographs are taken at different points in

time; the flight path of the aircraft determines the stereo baseline.

Except for the artificial data, the two images are usually not in perfect

registration, and must be adjusted before processing. Furthermore, professional aerial

photographic film is very large (nine inches on a side) and only a small portion can be

digitized for our experiments. The selection of a digitization window in each image is

£ done by hand, usually with the goal of maximizing overlap in an interesting portion of

the scene. This process introduces further uncertaities in image registration.

I. • w. w .a m :: : ---'-': " ._A .. ,
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Figure 3-1: Artificial imrages or a block model city were provided by

Control Data Corporation.

3.1.2 - Determnining the Camera Model

In the aircraft images, the registration of the two images was only approximate.

We used a technique described in an carlier paper [Arnold 1978] (and in the appendix) to

calculat~e the parameters required for more precise registration:

I a orientation of the stereo axis

I e relative rotation

* relative scale factor

w relative translation perpendicular to the stereo axis

The choice or these four limage-based parameters is mnore suitable than camera-based

- parameters (e.g., pan and tilt) for aerial photographs, whe~re the depth range of the subject

is very intch siraller tha.ni the altitudle ci'the camera.
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The parameters are calculated by establishing ,Leree correspondence on a non-

coplanar set of four or more points, and executing a least squares algorithm. Programs

by Moravec [Moravec 1980] and Cennery [CGnnery 1980] are used to choose the set of

points automatically, to do the stereo correlation and to solve for the parameters. Once

the images are registered, the remaining camera parameters are calculated (see Figure

3-2). XL, YL, XR and YR are calcuiated from th'e digitization window location, and B

and f are calculated as explained below.

For example, consider the images of the blocks scene, which were obtained from

Control Data Corporation. These data are artificially produced, so the images are already

registered. There is no relative rotation, translation or scale factor between the two images

-AA
Il

Figure 3-2: The normal caniera model Ior our stereo calculations is based
ot data taken from acrial photographs, W. .Wussure the c.m.rneras are aligned
as shown and that only pnrt or each imr,':jc i; dig•iti',d for procossing.

a
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and the stereo axis is parallel to the z-axis in the liage plane. The optical axes of the

cameras pass through the center of each image, so XL = YL =-- XR = YR = 0. However,

the image distance, f, and stereo baseline, B, are not known in advance.

First, we loosely define a ground plane as a plane in the scene paiw:flel to the

film plane, in or before which many features lie but beyond which few if any features

are visible. In the case of aerial photographs over flat terrain, this corresponds with the

actual ground surface. If A and B are ground plane features in the scene with actual X-

coordinates XA and XB, then their corresponding image coordinates are XLA and XIB in

the left image and XrA and xrB in the right image (see Figure 3-3). Since the g, ound plane

is parallel to the image plane, XIA -- XLD =x rA - xrB. If from "ground truth" information

we know the actual distance between A and B in meters, then we can determine a mapping

scale factor, m:

XA- XB
XlA X-- ••

where:

mn is in meters per pixel.

This mapping scale factor may be calculated from either the left or the right image. It

will convert any distance iin the chosen ground plane to a distance in the image plane.

From the camera geometry and similar triangles we can see that m = Z/f, so

we can solve for the baseline B:

B dA

z7

S7, dA ,ndA (3- 2)

it,. •. •. '., " ,:•'•,,:•",...

L~ ____
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where:

dA (XL, + X1A) - (XR + zrA) is the atereo disparity in pixels, and

B is the baseline in meters.

Note that knowledge of both XIA and zrA requires a correspondence between a left image

point and a right image point representing a feature in the ground plane. This, together

! #1

X

II
MA

Xg ]A

Figure 3-3: These projections can be used to detcrmhn, stereo b:mseline
(11) From ground truth information (XA and X3) and image distance (f)

t* froth canera altitude (Z).

i-7. 11:
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with the mapping scale factor, allows calculation of tile stereo baseline. (If m were not

known, the baseline could be expressed in pixels.)

Tihe image distance, f, will often be known, since it is a simple function of

the camera lens and film size, but it is interesting to note the conditions required to

calculate it. Just as horizontal ground truth ib required to calculate the baseline, vertical

information is necessary to calculate f. If the distance from the camera to the ground

plane, Z, is known then:

Z
f --- = -- (3 -3)

where:

f is in pixels, and

M is ithe 1ntpping scale factor defined above.

Thus f can be determined from the "altitude" of the camera, Z, plus horizontal ground

truth. (More commonly, Z and f are known and are used to determine mi.)

If Z is not known, then the height of a known object in the scene can be used

(see 1igure 3-4). I" two points A and B in the scene (difter in their distance from the image

plane by h = zA -- zB meters, and stereo correspondence can be established for both
points, then:

is= in pixels, and (3-4)

where:

B is the stereo baseline,

dA = (XL + XIA) - (XR + xrA) is the stereo disparity for object A, ad

dB = (XL + xIB) - (XR + xrB) is the stereo disparity for object R.

4(-.
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I- >

3.1.3 - Edge Detection

Rlesearchi on e(Igc (leAtMetio, linking anid segmuen tat~ion is procCCvliflg at, Stanford

(Marimont 1982] and elsewhere and promises to stupply fairly clean line drawings front

real scoens in the future. In the nncantimie, we have chosen to derive our edge informiation

by hand with a computer's aid. The technique is to superimnpose straight line drawings

from hie, DESISG N [Lowe 1082] prograin on a grvy -scalc display of th, irmage data. The

dr awing is adljuisted by hand until i theo su lCpOe U o.-iito of all promnitinet. clg-es looks, accu rate.

I4
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Figure 3-5: ldge data is derived by hand from digitized images with the
help of a line drawing prograrm. These edges are :ntentionally imperfect.

Since these data are intended to reflect the expected performance of futue edge

segme'tation programs, care is taken to avoid using higl" r level human visual functions.

Edges are not extended into ambiguous or low contrast areaa. Left and right images are

derived independently, E.) some e(lges are "detected" in one view, but not in the other.

The information in the vicinity or corners or intersections is often omitted, so surface

boitdaries need nol, be closed. Even edge data from the blocks sicene, while derived from

noiseless artificial images, is not a perfecL line drawing (see Figtire 3-5).

MC
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3.1.4 - Preprocessing

The edge data are read by a program that takes the edge information together

with the original images and writes a file containing structured input data for the stereo

system. Figure 3-6 illustrates this data structure.

iI
vE"I"/PE"

VL=-D& E•
VePTR•

UX • tX
SUY/• LYf VETYPE

LPTR E-r

RSLI'D4 ESLE't, I

PsOT

E•'S VITR,

-'S VTI•

Figure 3-6: Line drawing data are read into a structure thiA relates• each
edge to it~s neig-I•bors, Information on the edge endpoink~ incluhdes their
coordinates, the type or vertex and a• list or" other edges belongilig t~o thatt
vertex. lnlrormation on the sides of' the Adge includes a list of' T-junctions
that segrment the side, Cheir positions, and the av-erage linage brig'htncss
adjacent to ea.ch segmnent.

_______
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Edge data consist of pairs of endpoints, each with an x- and y-coordinate in the

transformed stereo coordinate system. This system has units of pixels, a right handed

coordinate system with its origin at the image center and a stereo axis running left to

right along the x-axis. A record is created in the data structure for each edge segment.

This is done separately for left and right Images.

An edge record comprises the following:

UX,LX x-coordinate of the upper and lower endpoints

UY,LY y-coordinate of the upper and lower endpoints

UTERM,LTERM number of edges in upper and lower verticeseI

UPTR,LPTR pointers Lo tipper arid lower vertex record lists

LSLEN,RSLEN 'ength of left and right side record lists

LSID,RSID pointers to left and right side lists

Each edge record is compared with every other edge record to determine the

vertices in the image. A vertex is the intersection of two or niore edge segments in the

linage. When checking for intersections, each line is extended by a given amount in order

to compensate for data lost near corners. Thus, edge segments that approach within a

threshold but don't touch in the input data will be analyzed in subsequent steps as if they

intersected.

As each vertex is examined, it is classified as a termination if it is within a

threshold cr the end point of both lines, or as a "T" if it is near the end point of only

one line. "X" inter•ections, that are not near any ena points, are rare and are ignored at

present. (They may be handled by breaking one or both edge segments into two pieces.)

The infornation from each vertex is stored in the data structure as a vertex record, linked

to either the upper or lower end point of the edge segment. A vertex record comprises the

followi ,rg:

VETYPE type of termination

'3I
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VEDGE pointer to edge record

VEPTR pointer to next vertex record

In addition, "T" junctions generate side descriptor records linked to either the left

or right side of the edge segment (see below). It is important to note that the classification

of up and down or left and right depends on knowing an accurate camera model. This can

be a disadvantage if the camera model is subsequently refined. For example, if an edge is

nearly horizontal, a small rotation of the coordinate axes could change the up-down sense

of its endpoints and require a restructuring of the data.

Two steps are now taken to "clean up" the data. For a vertex that involves on!y

two lines, the coordinates of the intersection are used to replace the coordinates of the

endpoint of the edge(s) involved. This has the effect of lengthening edges that "almost"

touch and shortening edges that cross "slightly". These judgments are determined by a

distance threshold that is governed by the accuracy of the original edge finder. If a vertex

involves the endpoints of more than two lines, there is a good chance that not all pairwise

intersections will occur at the same point. In such cases, an average position is taken, and

the endpoints are adjusted to agree with it.

Each line that serves as the top of a "T" junction will have its corresponding

side (left or right) divided into two or more parts depending on the number of "T"

junctions involved. These parts are stored as sidi deacriptors in the data structure and

are classified as either left or right depending on their relative positions. A side descrýptor

record comprises the following:

ESBRI average brightness

ESBOT edge whose "'[r" junction forms bottom of this side

ESPOS position of bottom "T"

ESPTR pointer to next side descriptor
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After the side descriptors have all been found, they are sorted from top to bottom

descriptor.

The side descriptor of an edge record corresponds to a surface which is adjacent to

that edge. While much of the data structure is oriented toward representing the geometric

relations oi,. edge segments, side descriptors provide a place to store surface properties.

Brightness is stored as a single value in each side descriptor. Thus it must ropresent less

information that the original image, since there are fewer side descriptors than pixels. A

region in the image corresponding to a surface will be represented by n side descriptors,

where n is the ;aumber of edge segments in the boundary of the region.

To calculate these brightness values, we generate for each side descriptor an

epipolar line along which brightness values are sampled and averaged. The line intersects

the edge segment midway between the two vertices that define this side descriptor.

lnt,.usity values are sampled at 1/4 pixel intervals along this line either to the left or

right (depending on which side descriptor) until another edge or the edge of the image is

encountered. Each sample comprises a bilinear interpolation of the four pixel intensities

nearest the sample point. The sainples are averaged to prGduce a single value representing

the brightness of the surface. This very simple measuremcnt, repeated for each side

descriptor, is the only form in which the original intensity information is retained for

subsequent processing.

1i

-!., -i- - .
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3.2 One Dimensional Processing

The stereo problem is divided into a series of one-dimensional problems along

epipolar lines and the dynamic programming algorithm discussed in the last chapter I
is applied to each one independently. This section describes tile data structures and

procedures of the implementation,

3.2.1 - Slices

The dynamic programming match is applied to a selected set of slices through

the images. A slice consists of an epipolar line pair together with information about each

edge curve in the image that crosses the epipolar line. We define a slice to be two lists of

intersection records, one for the left image, one for the right image. Each list is sorted on

the valuc in LOC. An intersection record comprises the following:

EDG pointer to edge record whose edge curve intersects

this epipolar line

LOC x-coordinate of the intersection

ANG angle of the edge at the intersection

BRI average brightness of the interval to the left of this

edge

TOP y-coordinate gf top end point of this edge

BOT y-coordinate of bottom end point of this edge

TV type of vertex at top

BV type of vertex at bottom

This record supplies all the informatiolL for computing the constraints used by the Viterbi

matching.

Tile procedure for generating a slice is straightforward. Given the equation of an

epipolar line in each image, search through all edge r(cordls and make a list of intersection

1
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records, one for cach edge that intersects the epipolar line. Sort the lists by the value

in LOC, producing a left to right ordering. Calculate the average brightness, BRI, by

iiispecting the side descriptor records for each edge in the list. For each interval, there

will be typically two side descriptors from which we simply take the average of their

brightness values.

It is useful if each slice can be processed independently, making use of no in-

lorination froin adjacent slices. This property allows the computation over the whole

image to be easily nrogramnied for parallel computation. Thus, in our single processor

implementation, the order of choosing slices does not matter. However, the particular set,

of slices chosen does matter.

One technique is to gerberate slices every 8 pixels for the lirsk, iteration over images

of about 256 x 256 pixels. The second iteration uses another set of slices at an 8 pixel

spacintg, but phased to lie half way between those of the [irst set. This interlacing covers

thO image with a resolution of 4 pixels. A second method is to double the nu'nber of slices

at each iteration until the final resolution is reached. For example, on a 256 pixel image,

slice at 128, then at 64 and 192, then at 32, 96, 160, and 224, etc.

We have also experimTented with data-dependent choices, usually for the final

iteration. Por example, the 4 pixel interlace provides no direct data for some edge curves

with an extent, of less than 4, but the p umber oft missed edges is small. Thus, it is practical

to choose a final set of slices that pass through the centers of each missed edge.

For eacth slice chosen, we apply the modilied ViLter b algorithin to match the list, of

left intersection records with the list or right intersection records. (The implementation is

actually organiized around the intervals between intersections, rather than the intersections

th eiselvyes.) The dynamnic programming array is initialized and the best path calculated

isi rig the (wall ation functtion described below. Then a thirt-shold is set and all paths whose

sc(ores are wilfhin iithat threshold of the best path are idenntilied.

iz
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At this point, there is more information available about each of the paths than

is needed in the next step. The data structures are simplified by preserving only a

limited amount of data for each slice: a list for each edge (intersection) of all the match

interpretations given it by any oi the collection of suboptimal paths.

An edge match interpretation consists of a match type and a pointer to an edge

in the other image. The match type may be visible to both, in which case the pointer is

to a corresponding edge in the other image, or occluded, in which case the pointer is to

-ii edge of the occluding surface in the other image. This list is considered as a list of

possible interpretations, where an edge interpretation is possible if and only if it occurs

within a high scoring path. No attempt is made to assign weights to the edge match

interpretations based on path scores; all paths selected by the threshold are considered

equally likely.

It should also be noted that while a context spanning the image was used in

selecting each edge match interpretation, this context is not passed back with the match.

Although this represents a loss of some information, it serves to make the output of the

Viterbi algorithin more manageable.

3.2.2 - Evaluation Function

We have earlier described the modified Viterbi algorithm for determining the

optimal and sub-optimal paths. This section describes the evaluation function used in

that algorithm. The function consists or four terms, each with an ad hoc weight, combined

linearly:

S(K 1  + K 2 E, + K 3!, + KX 1 ) (3 - 5)
iEpath

where:

1r, 2 E, , K3 and K(4 are the ad hoc weights,
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and for each path element, i,:

1i is the composite interval measure,

,I is the composite edge measure,

Bi is the surface breaks penalty1 and

Xi is the excess length penalty,

This sum gives the score for each ef the paths which satisfies the geometric occlusion

constraints outlined earlier. The paths for which the siuti is a mniniiitimn is the optimal orI "best" path referred to above.

'Tihe summing of interval and edge measures is a simplification. These measures

are not in fact independent, since they are related to one another by the geometry

of the scene. However, we do not yet know the proper function for combining them.

Experimentally, adding them with a 60:40 weight favoring intervals has worked best. The

last two measures, surface breaks and excess length, are ad hoc mueasur:es that are given low

weights. Their priniary puirpose, is to distinguish ptLhs where there are many occlusions,

and hence litle information from the interval and edge measures,

Interval Measure

The interval measure consists of two components, brightness and interval length

ratio. These measures apply Lo a cominion object, the surface represented by the matched

intervals, so these two components are treated as probabilities and arc multiplied to

produce a composite mueastlre:

li =- 1l! iRATIOi (3 - 6).

In the case where the interval is occluded (visible in one image only) the value for 4I is

set to zero.

$L

I.

k!
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The brightnesa measure approximates the probability that the brightuesses from

the left and right images represent two measurements of the same physical property with

gaussian noise added. Note that reflectivity of a surface is not, in general, independent of

angle; thus the two cameras will not in fact measure the same physical property. However,

the effect of this simplification should be small in most scenes. Thus we use the following:

BRIg exp( - Bu2 )2) (3-7)

where:

BiL and FiRi are the average brightnesses of the left and right intervals,

respectively, and

NS is an estimate of noise in the brightness value.

Equal left and right brightness values always produce BII- 1, while values that. differ

by NS produce BRI- exp(-1/4) and so on.

The interval length ratio measure has been described earlier, in the section on

constraints. It is normalized to l1c between 0 and 1, by dividing by MAXIATIO, the

maximum value of the ratio lunction. Thus the ratio of the interval lengths from the

two images is mapped to a value between zero and one which we treat as a likelihood of

m

mach

I
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Edge Measure

The edge measure consists of three components, edge angle, edge extent and

endpoint position. As in the interval measure, these components represent measurements

of a common object, i.e., the udge crossing the slice. Thus the components are normalized

to lie between zero and one and are multiplied to give the edge measure:

E, EANG. ELENi EPOSj (3-8).

In the case where the edge is occluded (visible in one image only) the value for Eý is set to

zero. This measure will later be adjusted according to previous information (see below).

The edge angle measure is based on the calculation described earlier. The saddle-

shaped probability density surface takes on values between zero and pogitive infinity. We

normalize it to have an average value of one (volume under the surface 2r) and then

apply the following functiua to map its values to a range of zero to one:

S= -I

f (x - exp(- x).

Thus the two angles at which the edge curves cross the slice., in the left and right images

are mapped to a single value between zero and one which represents the likelihood that

the edge curves match. This edge angle measure is the strongest component contributing

to the overall edge measure.

The use of edge eztent as a constraint was discussed earlier. In this function,

the difference in extent lengths is normalized by the average of the two extents, and then

treated as two measurecinets subject to gaussian noise. Expected 'Ifferences are due to

differences in y-axis scale factors between the left and right images. The normalization

removes dependency on absolutie differences, and this is also the reason for using the
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derivative of camera model position error. Errors from image misregistration are to be

handled by the endpoint position measure.

The extent of each edge segment is calculated from the following:

LEXT = LTOPi - LBOTi

REXT = RTOPi - RBOTi !

From the left and right extents, we calculate:

(C- w _pLXT.- REXT (3-9)S= -- •expk "(LEXT + REXT)DYNS +1-

where:

tw is a weighting constant, currently 0.5, and

DYNS is an estimate r,' thM derivative of camera model and segmentation

accuracy, in pixels/pVxel.

The weighting factor allows the contribution of this measure to be adjusted ia

overall edge measure. A weight or 1 results in values ranging from zero to one, a weight

of 0.5 results in values between 0.5 aad 1.0 and so on. Equal left and right extents always

produce a value of 1.

In calculating this measure, a very simple form of monocular shape cue is used. If

the shorter of the two extents has a "T" junction At either end, we assume scene geometry

has occluded part or that edge curve and return a value of I for this measure.

The edge endpoint position measure is snimilar to the extent measure, but is per-

formed separately for top and bottom, and depdAs on abaoiutc p-coordinate positioning

rather than p-scale factor. Tha measure is calculated as follows:

TVAL. = r ITOI, - RTOI',Y)

YNS I)
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J3VALj x((,Oi-,1or N )2)

W'/ = -VI -w

EPOSi - (w'TVAL* + I - w')(w'BVAI, + 1 - w') (3- 10)

where:

w is a weighting constant, currently 0.5, and

YNS is an estimate of noise in y-posit.ion, in pixels.

in this f'unction, the difference in V-position is compared directly to an expected

error in y-position, YNS, assumed to be gaussian distributed. The values for i~op and

bottom are multiplied and weighted to give a final value. A weight of 1 results in values

ranging from 0 to 1 and a weight of 0.5 reeults in values ranging from 0.5 to 1. Equal top

auld bottom positions will produce the maxiunil) value vr 1.

As in extente, the end points are examined for "T" ji .rtions. In this case,

however, thO slope of the crossing edlge is also ctnsidered. Four c: •-s are coilsidered

explainabl~e b) Occlisioi, a"d rt-.eil," a ni.,iliiunt %alue (ser Fi?.urc 3-7).

__ l
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Figure 3-7. Them are four types of T-juncions that may shorten an edge

in one view.

Previous Information

Finally, there is a niechanisin for incorportiig exO crnal knowlmtirc oF an edge

match into the memure. This is used c ,ec(i iLc ,, 1 .ction from previous iterations into

the current evaluation, as w b be described iin a section below. The function used is a

simple o0'e.

E = if Pith, > 0.5 ,hen I - It,! - ,)(t - Eý) else 2 PREL/• (3 - 11)

whepre:

PRhr is the bias of prcvioti. b.ttiet-Cn ) and I, and

!'" i.• t|, zurrer" ea~u...o- t•' ,l i| -and

iI
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If there is no previous information about this particular edge match, PREI is set

to 0.5 and this function is the identity. If previous information is strong, PREi is > 0.5

and the result is scaled to lie between (2PREi - 1) and 1. If PRE, < 0.5 then the result

lies between 0 and 2PREi. For PREi - 0 or 1, the result is constrained to be 0 or 1

respectively.

Thus the measure for edges is taken as a combination of edge angle, extent and

endpoint position, modified by previous information. The result is a value between 0 and

1 which we treat as a likelihood of match.

Surface Breaks

The surface breaks measure is an ad hoc measure of surface continuity and

smoothness. Its value is 1 for an edge which represents a discontinuity and 0 for a smooth

continuous surface where the edge is a surface mark. The surface breaks measure is given

a small negative weight (-0.05) in the evaluation function, and serves to bias the results

toward smooth surfaces when there is no other strong information.

The measure is determined as follows (see Figure 2-10 for terminology):,
0 for edges which are interpreted to be out of the field of view of

one camera, since nothing can be deduced about such edges.

* b for edges on a left or right face, since these could lie on a smooth

surface.

* 0.5 for edges on left or right tops or bases since these represent a

transition from a vis'ble surface to an occluded one or vice versa.

There must be at least a slope discontinuity at these points.

* 0.5 for peaks and valleys, since these must be slope discontinuities.

* 1 for left or right cliffs, which can be caused either by discon-

tiiiuluies or two or more slope changes involving unseen edges.

I 3_
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If there is no previous information about this particular edge match, PREI is set

to 0.5 and this function is the identity. If previous information is steong, PREi is > 0.5

and the result is scaled to lie between (2PREI - 1) and 1. If PREi < 0.5 then the result

lies between 0 and 2PREi. For PREI - 0 or 1, the result is constrained to be 0 or 1

respectively.

Thus the measure for edges is taken as a combinatinn of edge angle, extent and

endpoint position, modified by previous information. The result is a value between 0 and

1 which we treat as a likelihood of match.

Surface Breaks

The surface breaks measure is an ad hoc measure of surface continuity and

smoothness. Its value is 1 for an edge which represents a discontinuity and 0 for a smooth

continuous surface where the edge is a surface mark. The surface breaks measure is given

a small negative weight (-0.05) in the evaluation function, and serves to bias the results

toward smooth surfaces when there is no other strong information.

The measure is determined as follows (see Figure 2-10 for terminology):

* 0 for edges which are interpreted to be out of the field of view of

one camera, since nothing can be deduced about such edges.

e b for edges on a left or right face, since these could lie on a smooth

surface.

•0.5 for edges on left or right tops or bases since these represent a

transition from a vis'ble surface to an occluded one or vice versa.

There must be at least a slope discontinuity at these points.

* 0.5 for peaks and valleys, since these must be slope discontinuities.

1 for left or right cliffs, which can be caused either by discon-

tniuillies or two or more slope changes involving unseen edges.

l - ' ..... . . .. . ...

k . . ., ;-
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o 0 or 0.5 for flat edges. For each of these intervals to left and

right both represent visible surfaces. From the detailed profile

information, the slopes of these surfaces can be calculated, either

exactly or to an inequality. For the exact calculations, slopes

whose ratio is between 0.9 and 1.1 are considered part of a smooth

surface, and score 0. For the inequalities, if slope values can be

chosen which satisfy the inequalities and produce a ratio between

0.9 and 1.1, a score of 0 is returned. For all other cases, a slope

discontinuity is indicated and the val!• returned is 0.5.

r E xcess L ngth

Excesa lkngth is a measure of profile irregularity. It is calculated by taking the

length of a profile segment, measured ii the epipolar plan-, of the slice, and subtracting

the minimum segmeat !zagth that could have produced the same total projectcd intervals

in the left and right views. This minimum length segment is generaliy one whose normal

intersects the baseline of the two cameras. Thus, a flat surface of this orientation would

have the minimnum profile length, while still filling the field of view. (Refer to Figure

2-22.) On the other hand, an irregular surface in which every part was visible to only one

camera would have the maximum value according to this measure. By giving this measure

a small negative weight (-0.1) in the evaluation function, we bias the results toward nearly

planar profiles in the absence of other strong information.

3.2,..- Res u!tg

The results of one-dimensional processing are a set of profiles for each epipolar

slice; each set includes the optimum and those suboptimal profiles that met the score

threshold c. Tne paths produced by the Viterbi algorithm together with the camera

* model parameters allow profiles to be reconstructed in the original scene geometry. We

S. . ,• . ,,
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present several such profiles heic, using the notation developed in a previous section, to

illustrate the results of one-dimensional processing.

The primary advantage of the extended algorithm is that it produces alternative

interpretations in addition to the local optimum. It is possible for one of these suboptimal

profiles to be preferred when a wider context is examined.

In Figure 3-8 we have selected a slice from an image of an L-1011 aircraft. The

slice passes near a corner in the wing, and the optimum profile found by the Viterbi

algorithm misinterpreted the profile at that point. In Figure 3-9a the notation (2,2,2)

indicates that the surface corresponding to that interval has been interpreted as visible to

both cameras. This is an erroneous match of the wing shadow in the left view with the

aft portion of the wing in the right view. Interval (2,3,3) indicates that the aft portion of

the wing in the left view is interpreted as occluded. The forward porti-'n of the wing in

both views is correctly watched, as are all other intervals in the profile.

The evaluation function for the profile in Figure 3-9a equalled 4.4283. The

profile in Figure 3-9b scored 4.1964, but correctly interpreted the wing shadow, (1,2,3), as

occluded and the aft portion of the wing, (2,3,1) as matched. These match interpretations,

while locally suboptimal, were ultimately selected by the two-dimensional processing.

Figure 3-8: A slice taken through the aircraft scene at row --37 is used to
deioinstrate a "correct" prolile that is locally suhoptirnal.

.A



In addition to the coarse distinction between matched and occluded surfaces, the

Viterbi algorithm also distinguishes surface discontinuities from slope changes or surface

markings. Thus, we see that Figure 3-9b has incorrectly interpreted the ground surface,

(4,5,1), as being continuous with the wing surface, (3,4,1). The profile illustrated in

Figure 3-9c correctly shows the discontinuity, This last profile scored 4.0964, and wnS

72nd in the list of suboptimal profiles. The main reason for this large number of paths

is that surface discontiriui ties and surface markings are only weakly distinguish-Fd in the

evaluation function and the number of combinations over seven surfaces is lIrrge.

Most errors in computing profiles are caused by imperfect data, Naturally,a

system based on real images cannot expect to have perfect data, so it is important that

the efet ofetaoIisn ogso h iebiagrtmaelclzd iue31

461 "

it aeson 672 n .Tes ah crd.1t 4had7n

Fgrespciey in9 Thre slcteo d profles comthin 0.3 rof theop m slcoe.i Tigue

"correct" interpretation is the haist.

------__________7____77____
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Sshows the sam e aircraft im ages with slices selected at rows - 16 and - 17, one pixel apart.

In row -16, the slice misses the small box near tie tail in the right image and also misses

one boundary of the taxiway marK near the nose. The same slice misses an edge of the

boarding ramp near the nose in the lef image.

Figure 3-11a shows the locally optimal profile generated from the slice at row

-16. The most obvious problem is caused by the box, which'has been depressed below

the ground level to make it occluded by the wing. This severe distortion is due to the

fact that no other intervals were nearby to serve as an occluding surface. Near the nose,

missing edges from the right and left cancelled; there was no occlusion introduced, only

an incorrect and distorted match. In each case, the effects of the missing edges did not

extend beyond the adjacent intervals. From the wing shadow, (1,3,3), to the fuselage,

(5,8,1), all matcl.,s are correctly'interpreted.

Only one pixel away at row -17, the optimum profile correctly interprets all sur-

faces (see Figure 3-11b). There are no missing edges aind the occlusions are all legitimate.

Errors isolated to a single slice is a common effect of misregistration of images and il-

lustrates the value of using adjacent slices and continuity constraints to overcome local

errors.

I, Figure 3-10: Two siices taken hroulgh thJe aircraft scene at rows -16 and
-17 are used to dernonistrate ,he cffcct of missing edges.

who- I
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Figure 3-11: Profiles computed from the slices -16 and -17 in Figure
3-10 are shown in a and i, respectively. In a, the profile is distorted to
explain missing edges, but the effect is limited to intervals adjacent to the
missing edges. In b, there are no missing edges, and the profile is essentially
correct.

3.3 Two Dimensional Processing

The processing in two dimensions consists primarily of computing a value to be

assigned to each cdge match interpretation and feeding this value back into subsequent

iterations of the Viterbi algorithm. This computation. involves the final constraints,

continuity and consistency.

3.3.1 - Matdti Listtl

The results of the Viterbi algorithm acting on each slice must be incorporated

into the data structure in such a way that consistency between slices can be c( .,puted.

Four additional fields are added to the edge record that was described above. They are:

EMAT pointer to edge match list

K , 
-

!
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ESAMP number of samples supporting edge inatch list

M2MAT pointer to secondary edge match lirt

M2SAMP number of samples supporting TIM2MAT

An edge match list is a list of edge match records, each of which comprises the following

fields:

EMCLS pointer to match class list

JEMCNF confidence measure for this match class

EMNUM number of supporting samples

EMPTR pointer to next edge match record

A match class list is a list of match class records, each of which comprises the following

fields:

ECLRB inatch type (visible to left, right or both)

ECEDG pointer to match or occluding edge

ECPTR pointer to next match class record

The secondary structure (M2MAT) uses two similar record types with fields named

M2CLS, M2CNF, M2NUM, M2PTR and C2LRB, C2EDG, C2PTR. Figure 3-12

shows the relationship of these structures to the edge ,ecord.

The Viterbi algorithm processes a slice consisting of left and right parts. For each

edge in the left, EMSAMP is incremented and the list of edge match records is searched

for each interpretation found in the Vitci'bi algorithm. For exact matches (down to the

match class record), EMNUM is incremented in the corresponding edge match record. If

the interpretation is equivalent (see definition below) to an interpretation already present,

then a new match class record is added to the existing match class list and EMNUM is

incremented. If the interpretation is a totally it ihe, it is added to the data structure

1as a new edge match record with a single match ciads record, and EMNUM is set to 1.
Ii

I
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The same procedure is then followed for edges in the right part of the slice. Figure 3-13

illustrates this data structure for a sample imrage.

A refinement to this procedure is to ignore the interpretations for slices that are

too close to an edge'& endpoint. "Too close" is defined here as within YNS/2 pixels in the

V-direction, where YNS is the estimated uncertainty in the camera model (see Equation

'.,-10). This improves performance by preventing nilaregistration errors from propagating.

ESAMP LzmpTR

M115 MP

MIX MAT

Figure S-12: The '-.ta structure used ini the two dimensional processing
inck~des a list of potential matches for each edge. Bach potential match ma~y
comprise a list of consistent MaLCh interpretations. This prima~ry m.~tch list
is rebuilt on cach iteration and is us,ýd to update the secondary structure,
w'iich holds the final results.
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In this procedure a simple notion of edge match equivalence is used. The intent is

to make the matching procedure "_ndependcnt of edge segmentation. Therefore, two edge

matches are considered equivalent if:

9 the matchc:. are of the same type (i.e., both visible to both

cameras, or both occluded in the same view), and

* the edges pointed to are connected in the sense that the top

endpoint of one ieets the bottom endpoint of the other at a

vertex, and no other edges meet at that vertex.

The result of the procedure just described is to ensure that every edge match

interpretation, whether a match in both views or an occlusion, is incfurporated into the data

structure. The frequency of occurrence of each interpretation is also recorded (i.e., how

many samples or slices support a given interpretation). Equivalence classes are formed for

matches which are not identical in our representation, but which are potentially idenrical

in the scene.

3.3.2 - Conkiitency

The results rrom applying the Viterbi algorithm independently to each slice are

recorded in the dat- siructure as described above, The n.Lttches listed are those ,hikh

were calculated to be possible based only on the information in the particular slice taken.

The next step in the program is to lilter these potential matches by looking for consis~ency

across slices.

It is quite possible for a given match interpretation to be in error because of

noise or imperfect data on a p-articular slice. Such interpretations will generally not be

supported by adjacent slices. Interpretations which are consistent with a context including

multiple slices arc copied into a parallel data structure in preparation for subsequent

iteration.

. -I
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For cach edge, new potential malchcs are hypothcsized f'rom adjacent con nected

edges. The intent of this procedure is shown in Figure 3-14. If edge A is connected at top

or bottom to a second cdge It, anld t'e second edge cont,imiciis in tihe same direction (up or

down respectively) then the edge miatch list for this neighboring cdge is exanmiled. 'Ilhe

oiontiectiivity of each edge in this tmatch list (e.g., edge C( in tile figiure is cxamined for

connm:cwivity similar to that of thc second cdge, 13. Edges that have a1 po•itlioi anmdogotlsp to the originat edge (e.g., 1) in the ligure) arc hypothesized as inatche,|, and are added to

the primary match list without incremnentingr EMSAMP. This procedlure allows tmiatch

inloriiation to be 1)ropattt(cd along segmented scene vdges fromn oin s.gtmlelit to the next,

Witlhoutt thle overhead of selectin+g addiLional slices wi'd executing th, Vit•erbi algorithin.

'[lie continuity of eC•,es across epipolar lines is a sitflicitentty strong constraint to jkisLify

this.

I

B c

A D EPIPOLA

LINE

LEFT RIGHT

iP Figure 3-14: Sonic rriatclhes may be+ hb'pothtesized without, a<ct, tilly fruning
the s4tereo) Viterlbi al!;$)rithlt. Similar coniictlivit~y allow us• to a~ssumre a.

' l riatch betwee~n A :rnd I) based oii k :own ,ruatch betwcen 1? and C. Such
a imr, toh is ahhed IA) tohe dttaa strric Lire wi4'h zero (widlfc('~ 5o it will floe

i ~in tially afll'co other ,natchu s.

.. . . . . . .. . . . . . . ...............-. + .•," ,
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Vin remainder oth ogsecchcigpcdu builds the secondary data

structure. While the primary structure, (EMAT), 'a cumulative, this secondary match

list, (M2MAT), is initializedI on each iteration by copying ror each edge the valucs or the

primary match list. After this init~ialization, the continuity constraint is usedl to extend

the secondary miatchu lists ats described below.

Information on potential intchcE is p~ropagated to djilacent edlgcs based on con-A

tinuityl. Hlere we define two edges ats connected HI they meet in a vertex that includes no

other edges, and if one edlge extends upward from the vertex and the other downward.

rwo edIges that are joined by at sequence of connected edIges tire continuous. For cachi

edge, at search is made along such connected edges for mnatches which are equivalent to

any umatch in the current mnatch list. Any such equivalent matches are tallied in the

M2NUM field of the secondary match list.

Thus the evidence in the secondary miatch list includes information fromn two

sources:

A *e Evidlence derived from slices passing through the cdge.

* E~vidence gathteredi from connected edges.

T.lhis evidence is evaluated based on the number of samples that support at given matchl

interpretation, andl the total nuumber of sampJles contributing to any interpretati)nx for the

edge. For the. primary mnatch list,, the total number of samples is just the rnmnhber of slicesF ~ intersecting the edlge. The secondary rmatch list adds to this the number of samples fromt
connectedI edgesg. Note that an edge muatch that wats hypothes~ized in the previous step
may now accumulate evidence fromn conriected edges. (This constitutes a very crud~e use

of iinference rules of the. type dliscussedl by I hinford [H inford t981].)

The function uksed to produce a confid!ence measure for each cdge match inter-

pretation is:

CNF' 0.5 + NUS~AMP + 2 (3- 12)
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where:

CNF in the confidence measure,

NUM is the number of supporting samples, and

SAMP is the total number of samples.

This function has the property of yielding a value of 0.5 if no samples are available. If every

sample supports the match interpretation (NUM = SAMP), the function approaches 1.0

as the number of samples increases (11/2,2/3,3/4, ... ). If none cf the samples supports

the interpretation (NUM = 0), the value of the function approaches zero as the number

of samples increases (1/2, 1/3,1/4, ... ). This function is designed to yield a number which
I

can feed directiy into the Vi÷:rbi evaluation function as "previous information" (see edge

measure and Equation 3-11.)

3.3.3 - Resxklts

This section reports some of the results of applying the stereo system to test

data. A system has been written in the SAIL language and has been run on a Digital

Equipment Corporation PI)P-iO computer with a model KL-10 processor. The examples

in this section were computed by doubling the number of slice! per iteration until slices

had been obtaivid at uniform 4 pixel intervals. This required six iterations, beginning

with one slice through a 256 by 256 pixel image, and ending with 32 slices. For the jet

aircraft seen(-, total computation was 287 seconds, t•ompritsing about 4.5 seconds per slice

for the one-dimensional processing, and I second per iteration for the two-dimensional

consistency checking.

It is diflicult to show the total output of the stereo system; some edges have

been me.Ached in stereo, some have been classilied as occluded and some have not been

successfilly classified. Perhaps the sinnplest and most direct way to display results is to
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display Just those edges which have been given an unambiguous stereo correspondence.

Therefore, before an edge can be displayed, it must satisfy the following conditions:

* There is a unique match class that had the highest number of

supporting samples; i.e., it was consistent with the most slices

intersecting it.]'I

* That match class did not interpret the edge as totally occluded;

i.e., some part of it was visible to both cameras.

* The edge and its matching edge are each longer than four pixels

and overlap, when projected normal to Oe V-axis, at least 50%.

* The edge and its match have angles that are greater than 0.2

Iradian from the stereo axis.

Thus, ambigous matches and known occlusions are noL graphed. The position of an

occluded edge is bounded but not known exactly. The diagrams show only edges whose

position in 3-space has been completely determined by tLe system.

The edges are mapped to 3-dimensions and are scaled to fit in a convenient volume

of space. This results in a cluster of edges which are then reprojected onto the image

planes of two cameras that can be positioned interactively. The resulting images show the

edge curves from viewpoints other than those of the original cameras. The stercograms

may also be viewed in stereo by the practiced reader.

Ir

ii
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Stereo Rrsuits

Figure 3-15- Images from CDC show an artificial city scene.

Figure 3-16:. Edges are prodluced and the irnages are registered for stereo

processing.
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Figure 3-18: These stereograms show the same edges as !i'igulre 3-17, but
from ground level (0 degrees).
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I
Figure 3-19: Images from San Francisco Airport show an L-1O11 at a

boarding ramp.

.1I

' i

i3

I

Figure 3-20: Vdges are produced and tht images are registcred for stereo
processing. I

t I
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TV

I-

Figure 3-21: These sftcreograms show overhead (90 degree) and 30 degree
views of cdges whose 3-dimensional positions have been determnined.

#I
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I

Figure 3-22: These stereograrns show the sauno edges as Figure 3-21, but
troin ground level (0 degrees).
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SErrors

The most common type of errors occur from slight misregistration of the images,

or errors in edge detection. Thus we require czlges to overlap significantly before accepting

their interpretation. Another common form of error is the detection of short edges in one

Svie-w but noL in the other. Filtering out short edges avoids this "noise" without deleting

large objects. With the current scheme of applying slices at uniform intervals, these two

conditions are approximately equivalent to requiring a minimum number of raxmples or

slices on both edges.

I Another major source of error is due to positional inaccuracy on edges that are

nearly parallel to the stereo axis. The error in stereo disparity, ed, is approximately:

e- (3-13)
sin 0

where:

ep is the error in edge position (perpendicular to the edge), and

0 is the angle the edge makes with the epipolar line.

Matched edges whose angles are close to zero tend to have wild disparities, so these are

omitted from the display.

Finally, due to alignment errors, the endpoints of the edge curves will generally

not have identical y-coordinates. One or both edges are shortened to make this condition
i true, i.e., to give 100% overlap.



Chapter 4

FUTURE DIRECTIONS

4.1 Extensions and Unfinished Work

It is often true that research raises more questions than it answers. There arc a

number of directions future work could follow from the state reported in this thesis. Some

of these extensions fit in easily to the framework developed; some require restructuring.

4.1,1 - Surfiam

The data structure used by our Viterbi algorithm allows for the relating of

edges and surfaces. For example, an edge that lies "on" a surface is given a different

representation than an edge that is separated from a surface by a spatial discontinuity. f
In the current implementation, these states are distinguished only by weak constraints

(surracc. breaks and excess length), and none of this information is preserved in thl main

data structure or checked for consistency across slices.

To make use of this surface-edge information, more work needs to be don. on the

constraints that affect it. For example, "T" junctions usually imply aspatial discontinuities,

wiph the aurfacm aiong th,- top of the T "in front of" the two surfaces along the stern of

the T. Such information can be incorporated into the stereo system as it is developed,

and the data structures reorganized to preserve and use it. Some of this work in the area

of "shape from shape" is being done by Binford and Lowe [Lowe 19811 and Liebes Jl~ebes

t4
10SAm&
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4.1.2 - Equivalent Match Relations

ars Another problem that needs work is the classifieaLi,un or match interpretations

across epipolar slices. We have defined only simple equivalence relations, and the consis-

tency checking will find no information if the adjacent epipolar slices generate match

pairs that are not in one of the simple equivalence relations we have defined. A more

complete analysis of line' drawings in stereo would yield a larger and more complex set of

-elations,

*.1.ý - Viterbi Extensions

More work is possible or the Viterbi algorithm itself. In particular, its greatest

shortcoming is the ,cquiremnnt that every edge crossing an epipolar line be explained

geo-netrically. However, extraneous or missing edges due to noise or misregistration

cannot be explained tlis way. It would be useful if the Viterbi algorithm could be

extended to edit such edges out. All of oui ifforts to accomplish this have resulted in an

1iunmaiiage-able increase in complexity of both timyi and space.

A.1a -_=_E auntiort Function

There should also be mora theoretical wvork on the cvaluation functiou. '4i i1o

the most important components liave resulted frorn analytical work, others nre ad hoc,

and there is no unifying theory for conibining the various components.

The two most important numeric constraints, edge intervals and edge angles,

have been derived to map between distributions in object space and distributions in image

space. Ilowever, the implementation has assumed uniform distribtittons in both cases. It

should be possible to use a priori knowledge of tWe scene to estimate a more accurate

:* feature distribution, e.g., many vertical and horizontal surfaces and edges. This would

* translate into even stronger constraints on the image parameters.

. 4-
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One component in particular that has been greatly oversimplified is the use of

brightness information. We have intentionally limited our use of this source in order

to better study the problems of edge-based stereo. In the man-made scenes we were

concerned with, edges were dominant, and intensities could often be misleading. In any

stereo system that hopes to be general, however, intensity-based (area-based) techniques

will be required. An obvious compromise is to use both, since there are places, often in a

singk. scene, where each is superior. Certainly, the use of brightness in oui system could

be extended beyond a single value per surface.

4.1.6 - Edge Curves

Our implementation has concentrated on edges, and to simplify the problem

we have assumed edge curves comprise straight line segments. This assumption is not

essential, and could be relaxed to include curved segments or splines. All of the e osential

inputs to the constraint calcuklations- edge length, end point position, vertex types, angle

with respect to a given epipolar line are also available with curves.

4.1.7 -Lamera Model

Much of the preprocessing effort goes to determine camera model parameters

and to register the images. As we noted, it is necessary in these steps to solve the stereo

correspondence problem for a selected number of points before al the parameters can

be determined. This leads to a circular sort of ptoblem which is resolved only by the

fact that the stereo correspondence required for the camera model solution is much more

limited than the full correspondence in that most parameters are known a priori to some

approximatior..

p .•|.•j * I.... ]•,
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However, we have noted Lh.At mnany of the errotti seen in our examples result frofl

small er:ors in these parameters, Ideally, there should be a feedback process where at

byproduct of the matching is a reilnement of the camera parameters, which leads to a

better match, umd so forth. The use of vertex information is well suited for this feedback,

for once an edge i, rmatched, a correspondence is set up for any vertices to which it belongs.

If two vertices corresnond, any difterence in their y-coordinaOes is one error measure for

the camera model marameters at that location in the image. This can lead to a correction

matrix capable of accounting for and correcting many types of geometric distortion.

L

[I
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AMAP1E~X

5.1 Local Context Systemn

'J'liis section suimmlarizes an ('artier stereo systemi that was reported in 1 '378

[Arnold 10781. This systemi represents the first use or edge continunity as at comstraint

in feato re- based stereo. 'The initial proceýssing Steps, th rough the grounid plan c finde.-, are

used in the current, system to deterniine camera model p~aram~eters.

Stereo imiages were (tigiiized from small reglains of (NO) inch black andl vvhitk,

aerial photograph negatives. i'o redluce processing and memory requirenwaets, thetie were

normally reduced to I 28x I28 pixels. Subj ects inicludled commiie~rcial aircr Lt, at a Lermni ud

in San Franeisc mro1 ort, cars in at parking lot, and~ an apartmnent buldj~in~g complex.

A cameora miodel and groua1 d plane were calcul~ated fromi the (data iii the images in

a process which was ent~rely automated. An Int~erest Operator [Moravec. 197) was applied

'Figurc 5-1: A I 2Sxf28x8 bit i10 Lp p;Lir w,.s us~-ed, sh~owinig ~im [,-101 aitSm) rimcsc Airort
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to the left view to select approximatLy 50 "interesting" point'. A point was "interesting"

if it promised to be easily locatable in two dimensions (i.e., corners and intersections).

A fast binary search correlator [Moravec 19771 produced an initial match for each point,

searchinb the entire right image each time.

ad These matches were refined with a high resolution area correlator [Gennery 1977]

and passed to a catnera m%-dei soiver [Gennery 1977]. This camera model program solved

for four parameters:

1) direction o, ilc stereo axis

2) relative rotation between left and right views

3) scale factor between left and right views

4) translation perpendicular to the stereo axis

The usual camera solver determines 5 parameters. The spe-ial form we used is

u~eful in the degenerate case in which scene heights are .-qiall with rest ect to distance

from the film plane.

+

Stereo oxiss 3.71 diVrets
Relative rototiont -1.06 degrees
Scale factors .98S
Ironslationt 8.41 pixels

C:poundparm z -GU- .8SM2S6 -. 912 5y

* Figure 5-2: The carmera model and ground plane solvers produced four
image p.,rarneters and the ejiation for a plane.

I fI
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!I
The relative positions (disparities) of each matched pair along the stereo axis

provided information on heights relative to the film plane. At this stage, about half the

original 50 poii.ts had been automatically cejected for various reasons, and we relied on

the remainder to be evenly distributed in the scene. The points and their heights were

given to a ground plane finder [Gennery 197'/] which attempted to fit a plane to a subset

of them such that a few points were assigned heights above the plane, fewer below the

plane, and as many as possible on the plane. The total processing for the camera model

and the ground plane was about 8 seconds on a PDP-10.

The next step was to raster-scan an edge operator over the two pictures to extract

all usable edges. We used the Hueckel operator [Ilueckel 1973], witlh an operator radius

3 of 3.19 (32 pixels area). The Hueckel operator produces several accurate measurements

which can be useful in discriminating matches, including a measurement of angle that is
more accurate than other operators. Of this information, we retained for each edgel the
x-y posiLion, angle of edge, and brightness of minus and plus sides. About 1200 edgels

were produced from a 128x128 pixel picture in about 18 seconds.

" - .t ..\ -. .; o

, X-.

'-4--o. V. o." 4 -. , o -4 . / -

* I * - '. o* . / •

.7 ,- '• " • " 1 .. ' - ' . . . , , - ,,S

- -7

', l • . .. 4 , .. - "' .. , . ' • ' f ';

.( - - , -. * .4," " 1 .J ,- . . " ; . . l ," ,-* * " ' 4-• "'*., .! *''-'-- " - '" " ', "-

,\, \ ,, - - . ., \ ,', , - - . - .o.÷ . 1 
__o. 

° .\"•,

I ,% -.-.. ," : ÷ .5 ;

I * , 's , ,.. /

Figure 5-3: The Hueckel edge operator produced about 1200 edgels in
each view.
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At this point, all information was contained in the edge files, and the original

images were sdt aside. The edges from the left and rigb+, pictures were then adjusted with

the camera model and ground plane parameters to a standard coordinate system with

the stereo axis in the x direction and disparity shifts due to the tilt of the ground plane

cancelled. Thus all points lying on the ground plane had identical z and V coordinates in

the two views.

We then proceeded to match edges in the left (master) image with those in the

right, and extract a local context for each edge in the left. A grid of 8x8 pixel cells was set

up for the left and right pictures, each cell being the head of a linked list. Edge records

I1 were read in and linked to an appropriate cell based on the x and y coordinates of the

edgel. For these pictures, the linked lists had an average length of about 4."

For each edgel in the left picture, we wanted to find a list of possible matching
edgels in the right picture. The search was constrained to those edgels within a narrow

band, about 6 pixels wide in the y direction. The band started at the x coordinate of the

left edgel (zero disparity) and extended to an a priori disparity limit in the x direction,

For edgel pairs within the band, differences in brightness and angle were

thresholded to determine whether to accept or reject a potential match. If the match

was accepted, a disparity was calculated by extending the right edgel to intercept the y

coordinate of the left edgel. On the average, this search produced 8 ambiguous matches

for each edgel, that is, 8 edgels that agree in position, angle and brightness. Most of

these ambiguous matches were actually multiple edgels from the same secte edge, with

slight deviations in disparity due to noise. From this point on, no further information was

obtained from the right edge file.

For local context, we wanted a list of edgels in the left picture that probably lay

on the same physical edge ol' the object. Again, a scan ran through all edgels on the left,
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and a search was made for each one, this time in the left grid. Two edgels were linked if

certain loose conditions were met:

1) x and y coordinates matched within 3 pixels,

2) their angles matchbd within 90 degrees,

3) the angle of a line connecting edgel centers lay between

the individual edgel angles,

4) brightnesses were consistent on at least one side of the

edgels.

* Typically, this produced 3 or 4 links per edgel, and linked edgels tended to follow

edges of low to moderate curvature (see Figure 5-4.) The time for the matching and

linking was 33 seconds.

We then had for each edgEl in the left picture ? list of possible disparities and a

list of neighboring edgels which were linked to it. The problem was to choose a disparity

for each edgel in such a way that disparities were consistent along linked edges. We

implemented an ad hoc "voting" scheme whereby each disparity on the edgel's list was a

candidate, and only those neighbors which were linked could vote (see Figure 5-5).

The voting proceeded as follows: Let E be an edgel and L an edgel linked to E.

Let dL be a disparity on L's disparity list and dE a disparity on E's disparity list. If dL

and dE were equal or nearly equal (within .125 pixel disparity) then dE got two votes. If

dL and dB were close (within .375 pixel disparity) then d, got 1 vote. Otherwise, there

were no votes.

This loose condition for voting compensated :or quantization error in the record-

ing of disparities and allowed multiple edgels from a single edge to reinforce. After all

the voting, a bell-shaped distribution usually resulted about the best disparity, with wild

or inconsistent matches out on the tails of the curve. The maximum of the distribution

*
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was t.-.ken as the disparity for E. This processing took 8 seconds. We c-did then output

ia file of edgels with their three dimensional locations.

t: The system outlined above suffered from some serious problems. It irelied heavily

on the edge operator, which was deficient in several respects. It was susceptible to slow

gradients, at which it found a multitude of parallel edges that tended to match at every

possible disparity. Because it was a least squares process, it was easily led astray, for

example, near corners. This system also made very weak use of constraints other than

continuity (e.g., brightness and edge angle).
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Nevertheless, the system produced some useful depth maps and the results were

encouraging in many respects. Although there were many edgels, over 90% of them were
correctly matched. The depth map for the aircrRl images provided clear separation of

the ground from the plane, and resolved different parts of the plane according to their

height above the ground: wings, fuselage, stabilizer and boarding ramp. Even the dihedral

angle of the main wings was apparent; edgels at the wing tips had greater disparity than

edgels near the fuselage.

Edgea 34S5 OlsWitles 3*46,54,1,91

Edgiss 365, Ditpgaritles, *S0*,64,65.7, hLinkse 333,M.64S4.412.M,33*,6

Linket 333,345,4121

Edgoe. 4121 Oisparitoiess 41,41.42.45.751
Links. 345.36•,.4A%

Edgeo 4641 ClaltlrtIesu 42,42,42,46,U.64,1121
Linkoo 4121

Voting tally for 4121

Miep. 346 X *54 Total

41 II III IIIIII 11.
462 I II IIIIl' S
45 III IIII1w
75 II

Figure 5-5: A portion or the data structure produced by the matching
program shows a sample voting. The edgels are selected from those in figure
5-4. (All numbers are in octal).
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